
Electronic Journal of Education, Social Economics and Technology
Vol. 5, No. 1, (2024), pp. 19~29

ISSN 2723-6250 (online)

DOI: https://doi.org/10.33122/ejeset.v5i1.310

Research Article

19

Signature Originality Verification Using A Deep Learning
Approach

Muhammad Azi Saputra1 & Ida Nurhaida1,2*

1 Department of Informatics, Universitas Pembangunan Jaya, South Tangerang, 15413
2 Center of Urban Studies, Universitas Pembangunan Jaya, South Tangerang, 15413

*Corresponding Author: ida.nurhaida@upj.ac.id | Phone: +6287876725326

1. INTRODUCTION

In the ever-evolving digital era, signature security has become a crucial issue. A signature is a person's identification mark

to validate a document or show an agreement (Delvina, 2019; Octariadi, 2020). Signatures play a significant role in business

and financial processes as a form of agreement and in verifying the authenticity of documents and transactions involving

various parties, such as letters of agreement, Memorandum of Understanding (MoU), and documents related to legality
(Andani & Satya Nugraha, 2020). Manual signature verification typically involves directly comparing original and forged

patterns. Although frequently written signatures are similar, they are not always identical due to factors such as writing

position, size, type of writing instrument used, and the individual's age or mental condition (Putra et al., 2023). However,

technological advancements have made it easier to forge signatures, increasing document fraud with potentially severe

consequences.

For instance, in 2022, irregularities were identified in the signatures submitted in a case brought by University of
Lampung (UNILA) students to the Constitutional Court, indicating possible forgery (Ihsan, 2022). Similarly, in Samanera

Village, South Sulawesi, forged signatures and stamps were used in a fraudulent proposal for government assistance

(Pramono, 2024). These examples highlight the critical need for robust signature verification methods to prevent fraud and

protect individual and organizational interests. Forgery of signatures can lead to legal sanctions under Article 263 of the

Indonesian Criminal Code, which stipulates a maximum imprisonment of six years for such offenses (Izdihar Hulwa et al.,
2023).

In response to these challenges, advancements in machine learning and deep learning offer promising solutions. One
widely used method in signature verification research is Convolutional Neural Networks (CNN), known for effectively

detecting visual patterns in images, including signatures (Rabbi et al., 2019). Various studies have explored different CNN

architectures to enhance detection accuracy and efficiency. For instance, (Özyurt et al., 2023) combined MobileNetV2 with
feature selection techniques such as Neighborhood Component Analysis (NCA) and Chi2, improving classification accuracy

from 91.3% to 97.7%.
Other studies, such as those by (Jahandad et al., 2019), evaluated the performance of GoogleNet Inception-v1 and

Inception-v3 for signature verification, revealing that Inception-v1 achieved higher validation accuracy (83%) compared to

Inception-v3 (75%). This shows the importance of choosing the exemplary model architecture for signature verification. CNN
was applied to offline handwritten signature verification, achieving 95.5% accuracy with 130 signature samples, further

illustrating the strengths of CNN (Mosaher & Hasan, 2022).

ABSTRACT

The rapid advancement of digital technology has heightened the need for reliable methods to verify signature

authenticity, a critical aspect of document and transaction security. This study uses a deep learning approach to develop

a mobile application to verify the originality of paper and digital media signatures. The dataset comprises 1,060

signature images, including authentic and forged categories for both media types. The system employs the
EfficientNetV2M model, trained with augmented data, to enhance robustness. Model evaluation demonstrates strong

performance with an accuracy of 82.07%, a global precision of 81.31%, a global recall of 83.25%, and a global F1-score of

82.18%. The model is implemented in an Android-based mobile application, providing an intuitive interface for users to

upload and verify signatures in real time. These results underscore the potential of EfficientNetV2M for mitigating

signature fraud across various domains while highlighting areas for improvement, particularly in classifying paper-

based signatures. Future work will focus on expanding the dataset and refining feature extraction techniques to enhance
classification performance.

Keywords: Deep learning, Digital signature, EfficientNetV2M, Paper signature, Signature verification

Saputra & Nurhaida Electronic Journal of Education, Social Economic and Technology, Vol. 5, No. 1, (2024), pp. 19~29

20

Additionally, an approach combining Bidirectional Recurrent Neural Networks (BiRNN) with Discrete Fourier

Transform (DFT) for feature extraction was proposed, showing the effectiveness of RNN-based architectures in reducing
false rejection and acceptance rates (Nathwani, 2020). While these methods have demonstrated promising results,

innovation still has the potential to improve both efficiency and accuracy. Although various approaches to signature
verification have yielded promising results, there remains significant potential for further innovation to enhance both
efficiency and accuracy. One of the most noteworthy advancements in deep learning is the implementation of

EfficientNetV2M. This architecture provides distinct advantages, including improved computational efficiency and fewer
parameters than earlier models, such as MobileNetV2 and GoogLeNet. As a state-of-the-art deep learning model,

EfficientNetV2M has emerged as a compelling solution for signature verification. Its ability to optimize resource utilization
while maintaining high accuracy makes it an ideal choice for addressing the demands of fast and reliable signature
verification processes (Tan & Le, 2021).

Building on this background, this study aims to implement EfficientNetV2M to distinguish between genuine and forged
signatures in paper and digital formats. The proposed approach accelerates the verification process, saves time, and

minimizes human error. By leveraging EfficientNetV2M, the study seeks to contribute significantly to improving document
security across various sectors, including business, finance, and academia. The findings may pave the way for developing

more secure, efficient, and affordable signature verification technologies, addressing the growing challenges of signature
security in the digital era (Widiawati & Suliswaningsih, 2022).

2. RESEARCH METHOD

Figure 1 describes the research flow, which includes nine main stages: data collection, preprocessing, data augmentation,

model training, model evaluation, front-end development, back-end development, and model integration.

Figure 1. Research Flow

2.1 Data Collection

The data for this study were collected through a form distributed to Jaya University students, designed to gather examples

of original signatures in both paper and digital formats. Five hundred thirty original signature images were obtained, evenly
split between 265 images from paper media and 265 images from digital media, involving 53 participants. Five participants

created forged signatures on both media types (paper and digital) to enhance data variation. This process added another

530 forged signature images, equally divided between 265 images from paper media and 265 images from digital media.

The dataset comprised 1,060 images, consisting of original and forged signatures across paper and digital media. Table 1

presents a representative sample of the dataset used in this study, illustrating examples of genuine and forged signatures
across both paper and digital media.

Table 1. Dataset Sample

Genuine Paper Forged Paper Genuine Digital Forged Digital

Saputra & Nurhaida Electronic Journal of Education, Social Economic and Technology, Vol. 5, No. 1, (2024), pp. 19~29

21

2.2 Preprocessing and Augmentation

In the data preprocessing stage, several necessary steps are to prepare the signature images so that they are ready to be

used in model training. First, the signature images are resized to 224x224 pixels to ensure dimensional consistency across

all images. Next, the images are converted to grayscale format, and binary thresholding is applied to simplify irrelevant
information so that the model can focus more on the pattern and shape of the signature (Pujianto et al., 2021; Rudiansyah

et al., 2021). After preprocessing, the dataset was split into training (80%) and testing (20%) sets, resulting in 848 training
and 212 testing images. Several data augmentation techniques were applied to generate five variations for each training

image to enhance the training data, increasing the training dataset to 5,936 images. These techniques, explained in Table
2, include random rotation, horizontal flipping, random noise addition, brightness adjustment, and zoom transformations.
Each method ensures that the model is exposed to diverse variations, improving its robustness in recognizing unseen data.

Table 2. Augmentation Thecniques

Technique Description Formula/Matrix

Rotation Rotates the image randomly within the range of −15° to +15° 𝑅(𝜃) = [cos 𝜃 −sin 𝜃 0
sin 𝜃 cos 𝜃 0

]

Horizontal Flip Mirrors the image along the vertical axis. 𝐹(𝑥, 𝑦) = 𝐼(𝑤 − 𝑥 − 1, 𝑦)

Random Noise

Addition

It adds Gaussian noise to simulate variations in image quality.

The noise N is adjusted for each pixel intensity I

𝑁 ~ 𝑁(0, 𝜎2)
𝐼𝑛𝑒𝑤 = 𝐼 + 𝑁

Brightness
Adjustment

Adjusts the image's brightness randomly within 80% to 120%
of the standard brightness

𝐼𝑛𝑒𝑤 = 𝛼 . 𝐼
𝛼 ∈ [0.8, 1.2]

Zoom-in and Zoom-
Out

Scales the image by a factor z, where z > 1 for zoom-in and z <

1 for zoom-out. For zoom-out, borders are padded with black
pixels; for zoom-in, the central region is cropped.

𝑊𝑛𝑒𝑤 = 𝑤 . 𝑧
ℎ𝑛𝑒𝑤 = ℎ . 𝑧

These augmentation techniques were carefully selected to introduce realistic variations in the training data. For

instance, random rotation ensures the model learns from rotated versions of signatures, while brightness adjustment and
random noise simulate environmental conditions like lighting changes or noise in scanned images. Horizontal flipping adds

diversity by creating mirror versions of the signatures, and zoom transformations alter the scale to ensure robustness

against size variations. These techniques enhance the model's generalization capability, improving its performance on

unseen data and making it more robust for signature verification tasks (Najda & Saeed, 2024). Figure 2 shows examples of

the results after data preprocessing and augmentation, demonstrating how these techniques are applied to the original

signature images.

Figure 2. Data Preprocessing and Augmentation Techniques

2.3 Model Training EfficientNetV2M

Five thousand nine hundred thirty-six training data images were used to build the signature classification model. The

EfficientNetV2M model as a base model froze the network layers up to the block7e_dwconv2 layer to utilize the features

previously learned by the model. This approach allowed the model to adapt faster to the signature data by leveraging prior

knowledge from the pre-trained features. The implementation used Keras and TensorFlow libraries, widely used frameworks for

building and training deep learning models. The training was conducted on Kaggle's platform, utilizing NVIDIA Tesla T4 (2

GPUs) and the local system's 12 GB RAM. The Adam optimizer was employed for training with a learning rate of 0.0003, a

batch size of 32, and a total of 30 epochs. The training aimed to teach the model to recognize key patterns and differences

Saputra & Nurhaida Electronic Journal of Education, Social Economic and Technology, Vol. 5, No. 1, (2024), pp. 19~29

22

between genuine and forged signatures by focusing on features such as stroke order, pressure points, pen tilt , and angles,

connecting lines, shaky hands, and retouching indicators (Tirumala et al., 2024).

Table 3. Pseudocode: Implementing EfficientNetV2M Model

Step Description

Import Libraries
Import EfficientNetV2M, Dense, Dropout, Flatten, BatchNormalization, Adam, and utilities for

building the model.

Load Pre-trained

Model

Load the pre-trained EfficientNetV2M model with:

- weights='imagenet'

- include_top=False to exclude the fully connected layers.

- Input shape (224, 224, 3) for RGB images.

Freeze Layers

Freeze initial layers up to block7e_dwconv2:

- Iterate through layers of the base model.

- Set trainable = False for layers before the specified block.

Add Custom

Layers

Build the top layers for classification:

- Add a flattened layer to convert feature maps to a 1D vector.

- Add Dense layers with ReLU activation, L2 regularization, Batch Normalization, and

Dropout:

- First Dense: 256 units, Dropout 0.3

- Second Dense: 128 units, Dropout 0.25

- Third Dense: 64 units, Dropout 0.25

- Add the output layer: Dense with four units (for four classes) and Softmax activation.

Compile Model

Compile the model with:

- Optimizer: Adam, with a learning rate of 0.0003, 𝛽1 = 0.9, 𝛽2 = 0.999, and AMSGrad = True

- Loss function: categorical_crossentropy.

- Evaluation metric: Accuracy.

Train Model

Train the model using training data:

- Use a validation split (e.g., 20% of training data).

- Train for 30 epochs with a batch size of 32.

- Apply callbacks such as ReduceLROnPlateau (reduce learning rate) and EarlyStopping (stop

training when validation loss does not improve).

Table 3 outlines the pseudocode for implementing the EfficientNetV2M model, detailing each step, from importing

necessary libraries to training the model. The process includes loading the pre-trained EfficientNetV2M model with

specified configurations, freezing layers up to block7e_dwconv2 to utilize learned features, adding custom classification

layers, compiling the model with the Adam optimizer, and defining essential callbacks like ReduceLROnPlateau and
EarlyStopping. Each step presents a structured guideline that facilitates algorithm replication. This table effectively fulfills

the requirement to include pseudocode for implementing the EfficientNetV2M model in the study.

2.4 Model Evaluation

After training, the model is tested using test data. Evaluation metrics include accuracy, precision, recall, and F1 -score.

1) Accuracy, precision, recall, and f1-score
Accuracy measures the proportion of correct predictions from the total predictions, providing an overall picture of

the model's performance. However, this metric may be distorted if the data is imbalanced. Precision indicates how
accurately the model classifies genuine signatures by calculating the proportion of accurate optimistic predictions.
Recall measures the model's ability to identify all genuine signatures, assessing how well the model detects hidden

genuine signatures. F1-Score, the harmonic mean of precision and recall, provides a more balanced evaluation,
particularly for imbalanced datasets. A high F1-Score reflects accuracy in optimistic predictions and the model's

ability to identify the most positive examples (Krstinić et al., 2020; Sitarz, 2022).

Saputra & Nurhaida Electronic Journal of Education, Social Economic and Technology, Vol. 5, No. 1, (2024), pp. 19~29

23

2) Confusion Matrix
As shown in Table 4, the confusion matrix is a tool to assess the performance of a classification model and describe

the presentation of the model's prediction performance by comparing the prediction results with the actual data

values (Swaminathan & Tantri, 2024). The Confusion Matrix will calculate accuracy, precision, recall, and f1-score

from the following equations: (1), (2), (3), and (4), respectively (Evidently AI, 2024).

 Precision =
TP

TP+FP
 (1)

Recall =
TP

TP + FN
 (2)

F1 score = 2 x
Precision x Recall

Precision + Recall
 (3)

Accuracy =
Correct Prediction

All Prediction
=

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 (4)

Table 4. Confusion Matrix

 Assigned Class

 Positive Negative

Actual Class
Positive True Positive (TP) False Negative (FN)

Negative False Positive (FP) True Negative (TN)

2.5 Front-End Development

At this stage, the application interface was designed using the Flutter programming language. Flutter, developed by Google,

is a free and open-source framework that supports multi-platform application development from a single codebase (Tashildar

et al., 2020). Its direct-to-hardware rendering capabilities enhance graphic performance and responsiveness, making it an

excellent choice for applications with complex and dynamic user interfaces (GÜLCÜOĞLU et al., 2021). Figure 3 illustrates

the designed application interface.

Figure 3. Application Interface Design Prototype

2.6 Back-End Development

Python and Flask were utilized as the frameworks for backend development. Flask, a simple yet flexible Python-based
microweb framework, supports modular architecture such as Model-View-Controller (MVC). This framework simplifies

routing management, facilitates API development, and allows for adding additional features through extensions (Ningtyas
& Setiyawati, 2021). The back end was designed to handle image inputs, process them to generate pre-diction results,

calculate confidence values, and produce preprocessed images. Furthermore, it includes an API endpoint that accepts user

image inputs and returns JSON responses containing the prediction results, confidence values, and links to the preprocessed
images.

Saputra & Nurhaida Electronic Journal of Education, Social Economic and Technology, Vol. 5, No. 1, (2024), pp. 19~29

24

3) RESULTS AND DISCUSSION

The EfficientNetV2M training process was conducted for 20 minutes using Python 3.11.8 with a Tesla T4 GPU. This process
produced several findings.

3.1 Training Performance Matrics

The training accuracy consistently increases from 44.23% in the first epoch to 96.80% in the last epoch without significant
decreases. Validation accuracy, on the other hand, starts at 59.82% and reaches a peak of 91.55%. Despite minor fluctuations

in certain epochs—such as the 12th (79.47%) and 21st (83.60%)—the model demonstrates effective learning and strong
generalization on validation data. These fluctuations are attributed to the nature of validation data or the model's sensitivity
to specific data patterns.

Similarly, the loss metrics indicate a steady improvement in model performance. Initially, the training loss starts at
5.2875 and decreases to 0.7736 by the 30th epoch. Validation loss also shows a significant decline, starting at 4.4475 and

reducing to 0.8598 in the final epoch. However, minor increases in validation loss occur during the 12th epoch (1.7781) and
the 28th epoch (1.1281), reflecting minor adaptation challenges to validation data. The training accuracy and loss metrics

are illustrated in Figure 4, respectively.

Figure 4. (a) Loss Graph on Training and Validation Data, and (b) Accuracy Graph on Training and Validation Data

3.1 Confidence Intervals for Metrics

Table 5 below presents the mean and confidence intervals for the accuracy and loss metrics during training and validation.
The confidence intervals provide insights into the stability and reliability of the model's performance across different epochs,

indicating high confidence in the reported mean values.

Table 5. Confidence Intervals for Accuracy and Loss Metrics

Metric Mean CI Lower CI Upper

Training Accuracy 0.888346 0.848826 0.927865

Validation Loss 0.849738 0.822061 0.877415

Training Loss 1.688951 1.317453 2.060449

Validation Loss 1.723049 1.407757 2.038340

The mean values and confidence intervals for the accuracy and loss metrics during training and validation were

calculated with a 95% confidence level, providing a range of values within which the actual mean performance is expected

to lie. The training accuracy shows a high mean value of 88.83% with a confidence interval ranging from 84.88% to 92.79%,

indicating consistent performance during training. The validation accuracy demonstrates the model's ability to generalize
well to unseen data with a mean of 84.97% and a confidence interval of 82.21% to 87.74%. The overlap between the

confidence intervals for training and validation accuracy indicates that the difference in performance between the two

datasets is not statistically significant, supporting the stability of the model during training.

For the loss metrics, the training loss has a mean value of 1.689 and a confidence interval ranging from 1.317 to 2.060,

while the validation loss has a mean value of 1.723 and a confidence interval of 1.408 to 2.038. These intervals reflect a
steady reduction in the loss values over time, indicating that the model is learning from the training data. Although the

validation loss is slightly higher than the training loss, the overlapping confidence intervals suggest that the model
maintains a good balance between learning and generalizing to the validation data. The confidence intervals further assure

the model's reliability by highlighting its consistent performance across different epochs. Despite minor fluctuations

Saputra & Nurhaida Electronic Journal of Education, Social Economic and Technology, Vol. 5, No. 1, (2024), pp. 19~29

25

observed in some epochs, the narrow intervals demonstrate the model's stability and robustness throughout the training
process.

3.3 Hyperparameter Tuning

The EfficientNetV2M model underwent hyperparameter tuning to optimize performance and balance generalization. Layers

up to block7e_dwconv2 in the base model were frozen to retain pre-trained low-level features. In contrast, custom dense

layers were added with progressively decreasing units (256, 128, 64) and l2 regularization (0.005) to prevent overfitting.
Dropout rates of 0.3 and 0.25 were applied across the layers, paired with batch normalization to stabilize learning. The

Adam optimizer was used with a reduced learning rate of 0.0003, and AMSGrad enabled efficient weight updates. Dynamic

callbacks, including ReduceLROnPlateau and EarlyStopping, ensured optimal training by adjusting the learning rate and

halting when validation loss plateaued. This tuning approach allowed the model to learn effectively while minimizing

overfitting and maintaining robust performance across datasets.

3.4 Model Evaluation EfficientNetV2M

The evaluation of the EfficientNetV2M model includes analyzing its classification performance through a confusion matrix
and detailed metrics such as precision, recall, and F1-score. An error analysis was also conducted to identify

misclassification patterns and suggest improvements for better generalization. The resulting confusion matrix in Figure 5
shows the classification model's performance in determining the authenticity of signatures across four classes: 'genuine

paper,' 'forged paper,' 'genuine digital,' and 'forged digital.' Each class contains 53 samples, for a total of 212 samples. The

model successfully classified 174 samples correctly, resulting in % overall accuracy of 82.07%. Analysis of the evaluation
metrics for each class highlights the model's capability to discriminate between the classes. Class 2 ('genuine digital')

achieved the highest F1-score of 86.80%, demonstrating the model's strong ability to identify genuine digital signatures
with minimal misclassification. On the other hand, Class 0 ('genuine paper') exhibited the lowest F1 -score of 76.25%,

primarily due to a higher number of false positives (FP) and false negatives (FN). These errors suggest challenges
distinguishing genuine paper signatures from forged ones, likely due to their visual similarity or limited diversity in the
training data.

Figure 5. Confusion Matrix

Despite these challenges, the model demonstrates effective discrimination overall, with a global precision of 81.31%,
recall of 83.25%, and F1-score of 82.18%. These metrics indicate that the model is generally reliable in classifying samples

across all four classes. The confusion matrix also reveals that while digital signatures ('genuine digital' and 'forged digital’')

are easier to distinguish, paper-based signatures ('genuine paper' and 'forged paper') present more incredible difficulty due

to overlapping features. Global performance metrics, including precision, recall, F1-score, and accuracy, are calculated as

follows:

precision =
174

174 + 40
= 0.8131

Recall =
174

174 + 35
= 0.8325

F1 score = 2 x
(0.8131 X 0.8325)

0.8131 + 0.8325
 =

2 X 0.6769

1.6456
= 0.8218

Saputra & Nurhaida Electronic Journal of Education, Social Economic and Technology, Vol. 5, No. 1, (2024), pp. 19~29

26

Accuracy =
174

212
= 0.8207

Table 6. Model Performance Evaluation Based on Precision, Recall, and F1-score for Each Class

Classes Precision (%) Recall (%) F1-score (%)

Genuine Paper (0) 82 70 76

Forged Paper (1) 76 89 82

Genuine Digital (2) 85 87 86

Forged Digital (3) 86 83 85

Table 6 summarizes the performance metrics for each class, highlighting the model's ability to classify samples
accurately. Precision, which measures the proportion of correct optimistic predictions, is highest for class 3 ('forged digit al')

at 86% and lowest for class 1 ('forged paper') at 76%. Recall, which measures the model's ability to detect true positives, is

highest for class 1 ('forged paper') at 89% and lowest for class 0 ('genuine paper') at 70%. The F1 -score, which balances
precision and recall, is highest for class 2 ('genuine digital') at 86% and lowest for class 0 ('genuine paper') at 76%. These

results indicate that the model performs consistently well across most classes but struggles with classifying genuine paper
signatures accurately, which negatively affects its overall recall for this class.

An in-depth analysis of the model’s errors highlights specific challenges in distinguishing between particular classes,

particularly between ‘genuine paper’ (Class 0) and ‘forged paper’ (Class 1). False positives (FP) often occurred when genuine
paper signatures were misclassified as forged paper, likely due to visual similarities in stroke patterns or a lack of sufficient

variability in the training data for these classes. On the other hand, false negatives (FN) were commonly observed for
genuine paper signatures, where they were misclassified as forged or digital signatures. This indicates that the model

struggles to generalize well for the genuine paper class. In contrast, the model demonstrated stronger performance in
detecting ‘genuine digital’ signatures (Class 2), exhibiting relatively low rates of FN and FP. This suggests that the model
is particularly well-suited for handling digital signature data. Several strategies can address the issues observed with

genuine paper signatures. Data augmentation techniques such as adding noise, rotation, and scaling can be applied to
improve the diversity of the training samples. Furthermore, extracting more discriminative features and using class-

balanced training strategies, such as oversampling or applying weighted loss functions, can help reduce misclassifications
and improve the model’s ability to generalize effectively. Table 7 presents examples of the model's errors, highlighting
common misclassifications such as false positives and false negatives.

Table 7. Error Analysis for Signature Classification

Example Image Preprocessing Actual Class Predicted Class Error Type

Genuine Paper Forged paper False Positive (FP)

Genuine Paper Forged Digital False Negative (FN)

Forged paper Genuine Paper False Negatives

Saputra & Nurhaida Electronic Journal of Education, Social Economic and Technology, Vol. 5, No. 1, (2024), pp. 19~29

27

Genuine Digital Genuine Digital Correct

3.5 Model Implementation in Mobile Application

After successfully developing the EfficientNetV2M model, the next step is to create a prediction function that processes

input images and generates output from confidence values and class predictions. The model is initialized using weights from

the `signature_classification_model_82%.h5` file. This function begins by loading the input image using TensorFlow Keras'
`image.load_img` function, then applies preprocessing steps such as resizing the image to 224x224 pixels, converting it to

grayscale with OpenCV, performing binary thresholding, and finally converting the image back to RGB format with three

channels. Once preprocessing is completed, the model generates probability predictions for each class, and the confidence

value is calculated based on the highest class probability. These prediction results and the confidence score are returned as

a dictionary. The pre-processed image is also saved to the `static/preprocessed` folder with a unique filename and a
timestamp.

This prediction function can be integrated into an image upload route, enabling it to process HTTP POST requests in a
REST API-based application. The Flask-based service is designed to handle image files for classification through the

`/upload` endpoint. Upon receiving an HTTP POST request with an image file, the service saves the image to the

`static/uploads` directory. The image undergoes preprocessing, including resizing, grayscale conversion, and thresholding,
to prepare it for the model. The model then predicts the class label of the image along with its confidence score. The output

is returned as a JSON response, which includes the predicted class label, confidence percentage, and the file path to the
preprocessed image. The communication between the mobile application and the backend follows a clear request/response

structure: The client sends a POST request to the `/upload` endpoint, which includes the image file in the request body with

the content type set to `multipart/form-data.` The backend responds with a JSON object containing the
`preprocessed_image_path,` the predicted `prediction` class label (e.g., "Genuine Paper "), and the `accuracy` score (the

confidence percentage). For instance, a response might include: `{"preprocessed_image_path": "static/preprocessed/Genuine
Paper.png," "prediction": "Genuine Paper, ""accuracy": 49.62}`. Figure 6 illustrates the implementation of the mobile

application that integrates this Flask-based service. This mobile application allows users to upload images, which are
processed and classified through the API, providing real-time predictions and confidence scores.

Figure 6. Implementation Application Mobile

3.6 Discussion

Previous studies have developed a system for verifying genuine or fake signatures using deep learning models but have not

integrated them into a system. This study implements the model into a system as an application and utilizes the results of

verifying genuine or fake signatures based on paper and digital media. Although the developed model shows less than
optimal performance on the test dataset, the model still shows potential for classifying genuine or fake signatures from

paper and digital media.

Saputra & Nurhaida Electronic Journal of Education, Social Economic and Technology, Vol. 5, No. 1, (2024), pp. 19~29

28

4) CONCLUSION

This study successfully developed the EfficientNetV2M model to authenticate paper and digital signatures. The model
achieved a training accuracy of 96.80% and a peak validation accuracy of 91.55% during training, with a % accuracy on new

data of 82.07%. While the evaluation results demonstrated good overall performance, the model showed weaknesses in the
'Genuine Paper' class, which had the lowest F1-score of 76.25%, compared to the highest F1-score of 86.80% in the 'Genuine

Digital' class. This highlights the need for further improvements, such as expanding the dataset by 30% to include more
diverse Genuine Paper signatures and applying additional data augmentation techniques to improve performance and
reduce misclassifications of paper-based signatures. Additionally, model performance can be further enhanced by optimizing

parameters and exploring feature engineering methods to improve generalization and consistency across different data
distributions. The model has been successfully implemented in an Android-based application, allowing users to upload

signature images and receive prediction results and confidence values. This application provides a practical solution for
verifying digital and paper signatures, offering real-time predictions to end users. However, there are challenges regarding

deploying this application in real-world scenarios. Issues such as scalability, device compatibility, and managing large

volumes of requests need to be addressed for widespread adoption. Furthermore, user readiness must be considered,
particularly regarding the user interface, ease of use, and ensuring that the application performs consistently across diverse

conditions. Future research can focus on refining the deployment of the model in real-world applications by improving
scalability, optimizing the user experience, and evaluating the system's performance on a larger scale to ensure its

effectiveness in various environments.

REFERENCES

Andani, M. W., & Satya Nugraha, G. (2020). Signature Verification Using Feature of LBP and DCT With LVQ Classifier.

Jurnal Teknologi Informasi, Komputer, Dan Aplikasinya (JTIKa), 2(2).

https://doi.org/https://doi.org/10.29303/jtika.v2i2.107

Delvina, A. (2019). Penggunaan Tanda Tangan Elektronik dalam Pengajuan Pembiayaan berdasarkan Prinsip Syariah.

Jurnal Akuntansi Bisnis Dan Ekonomi, 5(1). https://doi.org/10.33197/JABE.VOL5.ISS1.2019.230

Evidently AI. (2024, October 1). Accuracy, precision, and recall in multi-class classification.

https://www.evidentlyai.com/classification-metrics/multi-class-metrics

Gülcüoğlu, E., Ustun, A. B., & Seyhan, N. (2021). Comparison of Flutter and React Native Platforms. Journal of Internet

Applications and Management. https://doi.org/10.34231/iuyd.888243

Ihsan, D. (2022, July 18). Kasus Tanda Tangan Palsu, Rektor Unila Buka Suara .

https://www.kompas.com/edu/read/2022/07/18/163653471/kasus-tanda-tangan-palsu-rektor-unila-buka-suara

Izdihar Hulwa, S., Khairani Br Ginting, R., Merlani Purba, D., Stevani Siahaan, C., Gabriel Siahaan, P., & Pika Lb Batu,

D. (2023). Tindak Pidana Pemalsuan Tanda Tangan Akta Tanah Ditinjau Dari Pasal 263 KUHP (Putusan No.

55/Pid.Pra/2023/Pn. Medan). 03(06), 799–807. https://j-innovative.org/index.php/Innovative

Jahandad, Sam, S. M., Kamardin, K., Amir Sjarif, N. N., & Mohamed, N. (2019). Offline signature verification using deep

learning convolutional Neural network (CNN) architectures GoogLeNet inception-v1 and inception-v3. Procedia

Computer Science, 161, 475–483. https://doi.org/10.1016/j.procs.2019.11.147

Krstinić, D., Braović, M., Šerić, L., & Božić-Štulić, D. (2020). Multi-label Classifier Performance Evaluation with Confusion

Matrix. 01–14. https://doi.org/10.5121/csit.2020.100801

Mosaher, Q. S., & Hasan, M. (2022). Offline Handwritten Signature Recognition Using Deep Convolution Neural Network.

European Journal of Engineering and Technology Research, 7, 44–47. https://doi.org/10.24018/ejeng.2022.7.4.2851

Najda, D., & Saeed, K. (2024). Impact of augmentation methods in online signature verification. Innovations in Systems and

Software Engineering, 20(3), 477–483. https://doi.org/10.1007/s11334-022-00464-4

Nathwani, C. (2020). Online Signature Verification Using Bidirectional Recurrent Neural Network. 2020 4th International

Conference on Intelligent Computing and Control Systems (ICICCS), 1076–1078.

https://doi.org/10.1109/ICICCS48265.2020.9121023

Ningtyas, D. F., & Setiyawati, N. (2021). Implementasi Flask Framework pada Pembangunan Aplikasi Purchasing Approval

Request. Jurnal Janitra Informatika Dan Sistem Informasi, 1(1), 19–34. https://doi.org/10.25008/janitra.v1i1.120

Octariadi, B. C. (2020). Pengenalan Pola Tanda Tangan Menggunakan Metode Jaringan Syaraf Tiruan Backpropagation.

Jurnal Teknoinfo, 14(1), 15–21. https://doi.org/10.33365/jti.v14i1.462

Özyurt, F., Majidpour, J., Rashid, T. A., & Koç, C. (2023). Offline Handwriting Signature Verification: A Transfer Learning

and Feature Selection Approach. Traitement Du Signal, 40(6), 2613–2622. https://doi.org/10.18280/ts.400623

Saputra & Nurhaida Electronic Journal of Education, Social Economic and Technology, Vol. 5, No. 1, (2024), pp. 19~29

29

Pramono, A. (2024). Kades di Bone Geram Tanda Tangannya Dipalsukan untuk Bantuan Motor 3 Roda . Detiksulsel.

https://www.detik.com/sulsel/berita/d-7127627/kades-di-bone-geram-tanda-tangannya-dipalsukan-untuk-bantuan-

motor-3-roda

Pujianto, R., Lestari, M., Wayan, N., Septiani, P., Raya, J., No, T., Gedong, K., Rebo, P., & Timur, J. (2021). Pengolahan Citra

Dan Metode Support Vector Machine (Svm) Dalam Pengenalan Pola Tanda Tangan. JRKT (Jurnal Rekayasa

Komputasi Terapan), 01(01), 2776–5873. https://doi.org/10.30998/jrkt.v1i01.4048

Putra, I. K. N., Dewi, N. P. D. A. S., Pusparani, D. A., & Mupu, D. N. (2023). Signature Identification using Digital Image

Processing and Machine Learning Methods. Jurnal Eltikom, 7(1), 29–37. https://doi.org/10.31961/eltikom.v7i1.618

Rabbi, Md. T. F., Rahman, S. M. T., Biswash, P., Kim, J., Sheikh, A., Saha, A. K., & Uddin, M. S. (2019). Handwritten

Signature Verification Using CNN with Data Augmentation. The Journal of Contents Computing, 1(1), 25–37.

https://doi.org/http://dx.doi.org/10.9728/jcc.2019.12.1.1.25

Rudiansyah, Ryanto, S. S., Rojali, Pandia, H., Marwan, R., Yoshara, R., & Effendi, K. (2021). Aplikasi Deteksi Penyakit

Tuberculosis (TB) Pada Balita Menggunakan Metode Pengolahan Citra Matlab. Jurnal Teknik Informatika, 1(3), 20–

25. https://doi.org/10.58794/jekin.v1i3.354

Sitarz, M. (2022). Extending F1 metric, probabilistic approach. https://doi.org/10.54364/AAIML.2023.1161

Swaminathan, S., & Tantri, B. R. (2024). Confusion Matrix-Based Performance Evaluation Metrics. African Journal of

Biomedical Research, 4023–4031. https://doi.org/10.53555/AJBR.v27i4S.4345

Tan, M., & Le, Q. V. (2021). EfficientNetV2: Smaller Models and Faster Training. https://doi.org/10.48550/arXiv.2104.00298

Tashildar, A., Shah, N., Gala, R., Giri, T., & Chavhan, P. (2020). APPLICATION DEVELOPMENT USING FLUTTER.

International Research Journal of Modernization in Engineering Technology and Science @International Research

Journal of Modernization in Engineering, 02(08). www.irjmets.com

Tirumala, M. G., Sowjanya, T., Lokesh, D., Lokesh, E., & Sheel, S. G. (2024). Advanced signature identification and

verification: using digital image processing and machine learning. Journal of Engineering Sciences, 15(04), 1724–1735.

Widiawati, C. R. A., & Suliswaningsih, S. (2022). Analisa Hasil Perbandingan Poly Kernel Dan Normalisasi Poly Kernel

Pada Support Vector Machine Sebagai Metode Klasifikasi Citra Tanda Tangan. Jurnal Informatika, 9(1), 71–77.

https://doi.org/10.31294/inf.v9i1.11288

