BAB II TINJAUAN PUSTAKA

2.1 Pengertian Banjir

Banjir ialah bencana alam yang akibatkan dari beragam faktor, seperti hujan, rusaknya retensi DAS (Daerah Aliran Sungai), kesalahannya rencana pembuangan alur sungai, sungai yang dangkal, serta salahnya tata daerah serta pembangunan sarana maupun prasarananya (Maryono, 2005). Banjir dapat didefinisikan sebagai menggenangnya sebuah tempat dikarenakan luapan air yang lebih dari kapasitas pembuangan airnya di wilayahnya yang membuat rugi fisik, sosial hingga ekonominya (Rahayu & Dkk, 2009).

Banjir dapat menyebabkan dampak merugikan yang signifikan, baik dari segi ekonomi, kerusakan infrastruktur, maupun kerugian material. Dampak tersebut meliputi rusaknya aset milik warga, hilangnya hewan ternak dan tanaman, serta timbulnya tekanan psikologis bagi masyarakat yang terdampak (Sundarta et al., 2018). Penanggulangan banjir dapat dilakukan melalui berbagai langkah, antara lain dengan membangun infrastruktur pengendalian banjir, mengelola serta mendistribusikan aliran sungai secara efektif, dan melakukan perawatan rutin guna mencegah kerusakan atau penurunan fungsi sarana pengendali banjir (Oktaviansyah, 2017).

2.2 Indikator Banjir

Terdapat beberapa indikator pada banjir, diantaranya:

- 1. Curah hujan yang sangat tinggi menyebabkan peningkatan debit sungai melebihi ambang batas.
- 2. Topografi dari sebuah daerah yang rentan akan terjadinya banjir.
- 3. Perubahan pada tata guna lahan di sekitar DAS yang mengakibatkan berkurangnya daya serap air.

2.3 Faktor Penyebab Banjir

Pada umumnya faktor penyebab banjir itu ada 2 faktor alam dan manusia.

1. Faktor yang terjadi secara alami

Disebabkan beberapa faktor, yaitu erosi, curah hujan, drainase, kapasitas sungai serta sendimentasi yang bisa merubah kapasitas penampungan sungai.

2. Faktor yang terjadi akibat manusia

Disamping faktor alam, faktor manusia jadi faktor utama sebagai penyebab banjir terutama untuk di daerah perkotaan. Beberapa faktor manusia yang menyebabkan banjir, yaitu penebangan hutan yang dilakukan secara liar, sampah yang menumpuk hingga di sungai, kondisi DAS yang yang mengalami perubahan, dan tidak melakukan perencanaan sistem pengendalian banjir.

2.4 Pompa Banjir

Perangkat yang berfungsi dengan bantuan mesin ini biasanya digunakan untuk memindahkan fluida dari satu tempat ke tempat lainnya. Pemindahan cairan terjadi akibat perbedaan tekanan yang mendorong alirannya. Pompa berperan dalam mengubah energi mekanik, seperti putaran poros, menjadi energi fluida berupa tekanan. Selain digunakan untuk memindahkan cairan, pompa juga berguna pula menambah laju alir, tekanan, serta elevasi cairan yang dipindahkan.

Selain itu, sistem dapat dirancang dengan memanfaatkan sensor ultrasonik untuk memantau tinggi permukaan air dan secara otomatis mengaktifkan pompa air mini saat air mencapai ambang batas banjir. Keberadaan pompa ini sangat berperan dalam upaya penanggulangan banjir, bahkan di beberapa wilayah jumlah pompa telah ditingkatkan guna memperbesar kapasitas penanganannya. Penggunaan pompa banjir bertujuan untuk menurunkan volume air ketika ketinggiannya mendekati level yang membahayakan.

Berikut beberapa jenis pompa banjir yang sering digunakan:

a. Pompa Sentrifugal

Berfungsi untuk memindahkan fluida dengan mengkonversi energi mekanik menjadi energi gerak dari hasil putaran impeller (baling-baling di dalam). Biasanya digunakan untuk pengairan irigasi dan juga drainase.

Gambar 2. 1 Pompa Sentrifugal

b. Pompa Submersible

Pompa yang berfungsi dengan di masukkan kedalam air secara langsung. Biasanya digunakan untuk menguras sumur dan dalam dunia konstruksi dipakai untuk dewatering.

Gambar 2. 2 Pompa Submersible

c. Pompa Mobile

Pompa yang berfungsi dengan untuk membantu dalam penanganan banjir karena sifatnya sementara. Biasanya digunakan saat terjadi banjir pada wilayah yang belum mempunyai pompa tetap.

Gambar 2. 3 Pompa Mobile

d. Pompa Stasioner

Pompa yang sudah ada secara permanen biasanya berupa rumah pompa. Biasanya digunakan untuk mengatasi banjir skala besar karena memiliki kapasitas yang cukup besar.

Gambar 2. 4 Pompa Stasioner

2.5 Pintu Air

Pintu air berfungsi sebagai struktur atau perangkat yang digunakan untuk mengontrol aliran air, biasanya dipasang di waduk, bendungan, atau di akhir saluran yang terhubung langsung dengan sumber air. Jenis-jenis Pintu air dan fungsinya:

a. Sluice Gate (Pintu Sorong)

Berfungsi untuk mengatur saluran air terbuka, bias juga sebagai pengendali debit pada banjir. Biasanya pintu air jenis ini dapat di naikkan secara manual maupun dengan mesin.

Gambar 2. 5 Pintu Air Sluice Gate

b. Flap Gate (Pintu Lipat Satu Arah)

Flap gate dapat berfungsi untuk mempertahankan ketinggian air di hulu secara konstan dalam berbagai laju aliran. Gerbang ini dirancang dengan sistem penyeimbang sederhana untuk mencapai aspek pengaturan otomatis.

Gambar 2. 6 Pintu Air Flap Gate

c. Slide Gate (Pintu Geser Horizontal)

Berfungsi sebagai pengatur pada saluran tertutup seperti dalam pipa. Biasanya digunakan pada bendungan maupun pengolahan limbah.

Gambar 2. 7 Pintu Air Slide Gate

2.6 Hidrologi

Menurut (Marta & Adidarma, 1983), hidrologi adalah ilmu yang mempelajari tentang terjadinya, pergerakan dan distribusi air di bumi, baik di atas maupun di bawah permukaan bumi, tentang sifat fisik, kimia air serta reaksinya terhadap lingkungan serta hubungannya pada kehidupan. Hidrologi mempunyai lingkup yang luas. Studi hidrologi mencakup berbagai wujud air serta transformasinya, diantaranya saat kondisi cair, padat, gas, didalam atmosfer, diatas serta dibawah permukaan tanahnya, distribusi, sebaran, gerakann serta yang lainnya.

Ilmu ini mendasar mempelajari pergerakan air diatas serta dibawah permukaan bumi, mulai dari proses presipitasi, kemudian bergerak melalui aliran permukaan maupun bawah tanah, hingga kembali ke atmosfer dari proses evaporasi atau transpirasi, atau mengalir menuju laut (Steffy, 2020).

Materi yang dipelajari mencakup berbagai komponen seperti siklus hidrologi, pengertian dasar, konsep serta elemen aliran permukaannya, karaktertistik tanahnya serta DAS. Siklus hidrologi melibatkan proses-proses seperti evaporasi, kondensasi, dan transpirasi. Di Indonesia, tipe siklus hidrologi yang paling umum adalah siklus hidrologi sedang, di mana hujan terjadi di wilayah daratan akibat perpindahan awan melalui proses adveksi (Hartini, 2017).

2.7 Drainase

Sistem drainase memiliki arti sebagai suatu konstruksiair yang dapat berfungsi guna meminimalisir dan melimpahkan sisa air di suatu wilayah, sehingga lahan mampu menjalankan fungsinya secara maksimal (Suripin, 2004). Drainase berfungsi untuk mengalihkan air yang kelebihan, sehingga tidak merugikan masyarakat (Hadihardjaja, 1997). Pada Kawasan perkotaan drainase memliki banyak fungsi, seperti dapat mengalirkan genangan air pada permukaan jalan. Umumnya, drainase ialah sebuah sistem insfrastruktur yang terdiri dari bangunan air yang fungsinya guna mengalirkan ataupun mengurangi kelebihan airnya dari sebuah area tertentu. Berikut 2 jenis drainese.

1. Drainase Alami

Drainase yang terbangun secara alamiah tanpa ada campur tangan manusianya.

2. Drainase Buatan

Saluran yang dibangun secara khusus dapat berupa saluran terbuka (*Open Channel Flow*) atau pipa yang dipasang di bawah permukaan tanah. Bentuk saluran ini bisa berupa penampang segi empat dengan ukuran yang disesuaikan berdasarkan kebutuhan.

2.8 Analisis Hidrologi

Dalam tahap perencanaan bangunan air, analisis hidrologi dilaksanakan pada awal proses. Analisis ini bertujuan untuk memahami karakteristik hidrologi di wilayah yang akan diteliti. Berikut adalah beberapa langkah yang harus diambil dalam menganalisis hidrologi:

- 1. Menentukan Daerah Aliran Sungai (DAS)
- Menentukan Stasiun Hujan
- 3. Menentukan rata-rata curah hujan maksimum harian
- 4. Menganalisis curah hujan rencana
- 5. Melakukan pemilihan jenis sebaran
- 6. Menentukan curah hujan periodic

2.9 Daerah Tangkapan Air

Daerah tangkapan air (DTA) yang juga disebut DAS (daerah aliran sungai) ialah daerah darat yang berperan dalam membendung, menyimpan serta mengalir air hujannya dengan alamiah menuju danau ataupun laut melalui sungai serta anak-anak sungainya. Batas wilayah daratan ini ditetapkan melalui pemisah topografis, sementara batas lautnya memuat area air yang masih ada pengaruhnya oleh kegiatan didaratan.

Karakteristik DTA dipengaruhi oleh keadaan biofisik wilayah tangkapan serta wilayah resapan airnya (Upadani, 2017). Namun sering kali mengalami tantangan yakni:

1. Perubahan Tata guna lahan

- 2. Deforestasi dan kerusakan lingkungan
- 3. Pencemaran Air

2.10 Curah Hujan Kawasan

Curah hujan kawasan mengacu pada jumlah air hujan rata-rata yang jatuh di suatu wilayah atau area tertentu. Untuk mendapatkan nilai rata-rata curah hujan di suatu kawasan, data dari beragam stasiun penakar hujan didalam ataupun sekitarnya wilayahnya perlu dianalisis (Hamdani et al., 2014). Terdapat dua cara yang dapat diterapkan untuk menakar rerata curah hujan di area tertentu, yaitu Rata-rata Aritmatik dan Polygon Thiessen. Berikut adalah rumus perhitungannya:

1) Rerata Aritmatik (Aljabar)

Metode sederhana yang menghitung rata-rata tinggi hujan dari semua stasiun yang digunakan. Rerata aritmatik cocok untuk daerah datar dengan curah hujan homogen (PUPR, 2018).

$$\overline{P} = \frac{P_1 + P_2 + P_3 + \dots + P_n}{n}$$
 2. 1

Keterangan:

$$\overline{P}$$
 = Hujan rerata kawasan,

$$P_1, P_2, ..., P_n$$
 = Hujan di stasiun 1, 2, ..., n,

$$n =$$
Jumlah stasiun.

2) Poligon Thiessen

Metode yang digunakan guna memperkirakan besar wilayah yang diwakilikan setiap stasiun hujan serta menghitung curah hujan ratarata berdasarkan daerah pengaruhnya. Poligon Thiessen diterapkan jika distribusi stasiun hujan di wilayah yang dikaji tidak seragam. (PUPR, 2018).

$$\overline{P} = \frac{A_1 P_1 + A_2 P_2 + \dots + A_n P_n}{A_1 + A_2 + \dots + A_n}$$
 2. 2

Keterangan:

$$\overline{P}$$
 = Hujan rerata kawasan,
$$P_1, P_2, ..., P_n$$
 = Hujan di stasiun 1, 2, ..., n ,
$$A_1, A_2, ..., A_n$$
 = Luas daerah yang mewakili stasiun 1, 2, ..., n .

2.11 Analisis Frekuensi

Analisis frekuensi secara fundamental adalah estimasi yang merujuk pada probabilitas timbulnya sebuah kejadian hidrologi, contohnya hujan rancangan yang dijadikan menjadi acuan utama dalam merencanakan hidrologi dalam menghadapi menghadapi berbagai kemungkinan di masa yang akan datang. Dalam proses analisis ini, pendekatan yang digunakan adalah teori distribusi probabilitas, yang mencakup beberapa metode seperti Distribusi Gumbel, Distribusi Log Pearson Tipe III, Distribusi Normal, serta Distribusi Log Normal (Harto, 1993). Untuk dapat mengetahui hubungannya diantara besar peristiwa ekstrem serta frekuensi kemungkinan timbulnya peristiwanya, demikian dibutuhkan sebuah analisa frekuensi.

Analisa frekuensi bisa digunakan dalam data debit sungai dan data curah hujan. Dalam perhitungan ini, data yang akan dipakai ialah curah hujan maksimal tahunannya. Persamaan berikut dipakai pada analisa frekuensi:

$$X_T = \overline{X} + (K_T \times S) \qquad 2.3$$

Keterangan:

 X_T = Hujan rencana dengan periode ulang T,

 \overline{X} = Nilai rata-rata dari hujan X,

 K_T = Standar deviasi dari hujan X,

S = Faktor frekuensi, nilai bergantung dari T.

2.12 Parameter Statistik

Nilai-nilai deskriptif yang digunakan untuk menjelaskan karakteristik populasi atau sampel data dikenal sebagai parameter statistik. Nilai-nilai ini

membantu memahami karakteristik distribusi data seperti kecenderungan sentral, penyebaran, dan bentuk distribusi. Parameter statistik berfungsi untuk menggambarkan perubahan dan perilaku distribusi data. Dalam konteks hidrologi, parameter statistik digunakan untuk menentukan jenis distribusi frekuensi yang cocok (Rahmat Wicaksana & Nirwana Kurniadi, 2023).

1) Nilai Rata-Rata (\overline{X})

Ukuran pemusatan data dihitung melalui penjumlahan seluruh nilai yang tersedia, selanjutnya dibagi dengan jumlah keseluruhan elemen dalam data.

$$\overline{X} = \frac{\sum X}{n}$$
 2.4

2) Standar Deviasi (Sd)

Jumlah selisih antara nilai sampel dengan nilai rerata.

$$Sd = \sqrt{\frac{\sum (X - \overline{X})^2}{n - 1}}$$
 2.5

3) Koefisien Kemiringan (Cs)

Nilai yang menggambarkan sejauh mana ketidaksimetrisan dalam distribusi data.

$$Cs = \frac{n\sum (Xi - \overline{X})^3}{(n-1)(n-2)S^3}$$
 2. 6

4) Koefisien Kurtosis (Ck)

Nilai yang mengukur tingkat ketajaman suatu kurva sebaran dan pada dasarnya disandingkan dengan distribusi normal.

$$Ck = \frac{1/n\sum(Xi - \overline{X})^4}{1/n\sum((Xi - \overline{X})^2)^2} \frac{n^2}{(n-1)(n-2)(n-3)} \quad \dots \quad 2.7$$

5) Koefisien Variasi (Cv)

Hasil Standar Deviasi (Sd) dibandingkan dengan nilai rerata (\overline{X}) .

$$Cv = \frac{Sd}{\overline{X}} \qquad 2.8$$

Keterangan:

 \overline{X} = Nilai rata -rata curah hujan (mm),

n =Jumlah data curah hujan,

Sd = Deviasi standar curah hujan,

Cs = Koefisien kemencengan curah hujan,

Ck = Koefisien kurtosis curah hujan,

Cv = Koefisien variasi curah hujan.

2.13 Plotting Data

Untuk dapat mengetahui distribusi probabilitas apakah sudah sesuai dengan rangkaian data hidrologi. Sebelum dilakukannya uji kesesuaiannya dilakukan plotting data dahulu. Berikut merupakan rumus yang digunakan untuk menghitung probabilitas setiap data:

$$P(Xm) = \frac{m}{n+1} \qquad 2.5$$

Keterangan:

P(Xm) = Data urut dari besar ke kecil atau sebaliknya,

m = Nomor urut,

n =Jumlah data.

2.14 Pemilihan Jenis Sebaran

Dalam analisa hidrologi, pemilihan jenis distribusi frekuensi merupakan langkah krusial guna mendapat hasil yang akurat serta bisa dipercaya, mengingat data hidrologi seperti curah hujan serta debit aliran mempunyai sifat yang acak serta berubah-ubah. Data hidrologi dasar yang dibutuhkan meliputi data curah huan, data debit, serta data iklim yang esensial sebagai masukan

guna menghitung informasi hidrologi siap pakai seperti tersedianya air, banjir rencana, aliran rendah serta sedimentasi (Rahman Oktaviansyah, 2017).

Tabel 2. 1 Parameter statistik untuk menentukan jenis distribusi

No	Distribusi	Persyaratan
1	Normal	$C_s \approx 0$
		$C_k \approx 3$
2	Log Normal	$C_s = C_v^3 + 3C_v$
		$C_k = 5,383$
V		$C_v \sim 0.06$
3	Gumbel	$C_s = 1,14$
		$C_k = 5.4$
4	Log Pearson III	$C_s \neq 0$

Sumber: SNI 2515:2016

2.15 Uji Kecocokan Sebaran

Uji ini maksudnya guna mengetahui kebenaran analisa hujan terhdapa simpangan dari data vertikan serta horizontal, yang membuat dapat diketahui apa penentuan metode distribusi frekuensi yang dipakai pada perhitungan diterima ataupun ditolak. Metode uji yang sering digunakan ialah Uji Chi-Kuadrat serta Uji Smirnov-Kolmogorov.

1. Uji Chi-Kuadrat

Uji Chi-Kuadrat tujuannya guna penentuan kesesuaian distribusi yang ditentutkan bisa merepresentasikan distribusi statistik dari sample data yang dianalisa. Ketetapan dalam uji ini dapat ditentukan berdasarkan rumus berikut:

Keterangan:

 X_h^2 = Parameter Chi-Kuadrat teritung,

k = Jumlah kelas,

Fe = Frekuensi pengamatan kelas j,

Ft = Frekuensi teoritis kelas j.

Menurut (Limantara, 2018), derajat bebas (Dk) dapat dihitung menggunakan rumus berikut ini:

- a) Dk = k-1, apabila frekuensi yang ditentukan tidak memperhitungkan parameter sampel
- b) Dk = k-1-m, apabila frekuensi yang ditentukan memperhitungkan m parameter sampel

Tabel derajat kepercayaan yang diterapkan dalam persamaan Chikuadrat ialah:

Tabel 2. 2 Nilai kritis untuk distribusi Chi-Kuadrat (Uji satu sisi)

DI-	Derajat Kepercayaan, α							
Dk	0,995	0,99	0,975	0,95	0,05	0,025	0,01	0,005
1	0,0000393	0,000157	0,000982	0,00393	3,841	5,024	6,635	7,879
2	0,0100	0,0201	0,0506	0,103	5,991	7,378	9,210	10,597
3	0,0717	0,115	0,216	0,352	7,815	9,348	11,345	12,838
4	0,207	0,297	0,484	0,711	9,488	11,143	13,277	14,860
5	0,412	0,554	0,831	1,145	11,070	12,832	15,086	16,750
6	0,676	0,872	1,237	1,635	12,592	14,449	16,812	18,548
7	0,989	1,239	1,690	2,167	14,067	16,013	18,475	20,278
8	1,344	1,646	2,180	2,733	15,507	17,535	20,090	21,955
9	1,735	2,088	2,700	3,352	16,919	19,023	21,666	23,589
10	2,156	2,558	3,247	3,940	18,307	20,483	23,209	25,188

Sumber: Suripin, 2004

2. Uji Smirnov-Kolmogorov

Uji Kecocokan nonparametrik ataupun yang lebih dikenal dengan sebutan uji Smirnov-Kolmogorov, tidak bergantung pada fungsi distribusi tertentu. Pengujian ini bisa dijalankan melalui rumus berikut:

$$P = \frac{m}{n+1} \times 100\%$$
 2. 11

Keterangan:

$$P$$
 = Probabilitas

m = Nomor urut data

n = Jumlah Data

Berikut adalah langkah-langkah pengujian dalam Uji Smirnov-Kolmogorov:

- a) Menyusun data harian tertinggi, baik dari dari nilai paling besar ke paling kecil ataupun kebalikannya, kemudian menentukan peluang guna setiap data
- b) Hitung peluang teoritis dari setiap nilai berdasarkan distribusi yang digunakan
- c) Identifikasi perbedaan nilai terbesar antara peluang empiris dengan peluang teoritis
- d) Gunakan nilai kritis untuk menentukan besaran D_0 . Distribusi teoritis dianggap sesuai jika nilai $D_{maks} < D_0$.

Tabel 2. 3 Nilai kritis D₀ dar<mark>i uji Smirnov-Kolm</mark>ogorov

N		Derajat Ke	<mark>pe</mark> rcayaan, α		- /	
14		0,20	0,10	0,05	0,01	
5		0,45	0,51	0,56	0,67	
10		0,32	0,37	0,41	0,49	V
15		0,27	0,30	0,34	0,40	
20		0,23	0,26	0,29	0,36	
25		0,21	0,24	0,27	0,32	7
30	1	0,19	0,22	0,24	0,29	
25		0,18	0,20	0,23	0,27	
40	1.	0,17	0,19	0,21	0,25	
45	1/	0,16	0,18	0,20	0,24	
50		0,15	0,17	0,19	0,23	
N>50		$\frac{1,07}{N^{0,5}}$	$\frac{1,22}{N^{0,5}}$	$\frac{1,36}{N^{0,5}}$	$\frac{1,63}{N^{0,5}}$	

Sumber: Suripin, 2004

2.16 Intensitas Curah Hujan

Metode rasional ialah cara menghitung debit banjir yang membutuhkan data intensitas curah hujan. Yang dimaksud dengan intensitas curah hujan itu sendiri ialah tingginya curah hujan yang timbul di waktu yang mana air tersebut terkonsentrasii (Loebis, 1992). Rumusnya menggunakan rumus Mononobe, lalu hitung waktu setelahnya sampai didapatkan data intensitas hujan yang ditampilkan dengan tabelaris. Setelahnya didapatkan intensitas hujan di waktu lanjutannya serta mendapat grafik intensitas hujan.

Tabel 2. 4 Keadaan Hujan dan Intensitas Hujan

IZ 1 II - !	Intensitas Hujan (mm)		
Keadaan Hujan	1 Jam	24 Jam	
Hujan Sangat Ringan	<1	<5	
Hujan Ringan	1-5	5-20	
Hujan Normal	5-10	20-50	
Hujan Lebat	10-20	50-100	
Hujan Sangat Lebat	>20	>100	

Sumber: Triatmodjo, 2008

Jika data hujan dengan d<mark>urasi singkat t</mark>idak diperoleh d<mark>an han</mark>ya terdapat data harian, maka untuk menentukan intensitas hujan diperbolehkan menggunakan persamaan Mononobe seperti berikut:

$$I = \frac{R_{24}}{24} \left(\frac{24}{t}\right)^{2/3} \tag{2.12}$$

Keterangan:

I = Intensitas hujan (mm/jam),

 R_{24} = Curah hujan maksimum harian (mm),

t = Lamanya hujan (jam).

2.17 Analisis Debit Rencana

Debit banjir rencana ialah debit maksimal yang terjadi pada sungai ataupun saluran alami yang ditetapkan melalui periode ulang yang telah ditetapkan. Penetapan debit rencana dilakukan dengan menganalisa debit puncak, serta

umumnya dihitung berdasar observasi harian dari tinggi muka airnya. Nilai debit rencana bisa ditetapkan melalui analisis periode ulang.

Metode rasional ialah metode terdasar yang dipakai guna menentukan debit di suatu wilayah aliran sungai yang tak mempunyai observasi debit.

$$Q = 0.278 \times C \times I \times A \qquad 2.13$$

Keterangan:

Q = Debit banjir rancangan (m 3 /d),

C = Koefisien pengaliran yang nilainya seperti pada Tabel 2. 5

I = Intensitas hujan (mm/jam),

 $A = \text{Luas daerah tangkapan (km}^2)$

Tabel 2. 5 Koefisien Limpasan untuk Metode Rasional

Deskripsi Lahan/Kar <mark>akter Permuka</mark> an	Koefisien Aliran, C
Business	
Perkotaan	0,70-0,95
Pinggiran	0,50-0,70
Perumahan	
Rumah tunggal	0,30-0,50
Multiunit, terpisah	0,40-0,60
Multiunit, tergabung	0,60-0,75
Perkampungan	0,25-0,40
Apartemen	0,50-0,70
Industri	
Ringan	0,50-0,80
Berat	0,60-0,90
Perkerasan	
Aspal dan beton	0,70-0,95
Batu bara, paving	0,50-0,70
Atap	0,75-0,95
Halaman, tanah berpasir	
Datar 2%	0,05-0,10
Rata-rata, 2-7%	0,10-0,15
Curam, 7%	0,15-0,20

Deskripsi Lahan/Karakter Permukaan	Koefisien Aliran, C
Halaman, tanah berat	
Datar, 2%	0,13-0,17
Rata-rata, 2-7%	0,18-0,22
Curam, 7%	0,25-0,35
Halaman kereta api	0,10-0,35
Taman tempat bermain	0,20-0,35
Taman, perkuburan	0,10-0,25
Hutan) / .
Datar, 0-5%	0,10-0,40
Bergelombang, 5-10%	0,25-0,50
Berbukit, 10-30%	0,30-0,60

Sumber: McGuen, 1989 dalam Suripin, 2004

2.18 Kala Ulang

Banjir rancangan diwakili berbentuk debit banjir sungai yang dihubungkan pada suatu interval ulang tertentu. Kala ulang ini ialah periode rata-rata di mana debit banji yang serupa ataupun lebih tinggi dari nilai debit rancangan diperkirakan akan muncul kembali.

Contoh Perhitungan Kala ulang:

$$Q_{5thn} = X^{m^3}/_{dt}$$
 atau P5 thn = X mm

$$Q_{5\,thn} = X^{\,m^3}/_{dt} \,atau \,P5\,thn = X\,mm$$

$$Pr\,ob\,\left(Q \ge X^{\,m^3}/_{dt}\right) = \frac{1}{n}\%$$

2.14

Probabilitas terjadinya:

- Bisa muncul sekali
- Dapat tak pernah muncul selama 5 tahun
- Dapat berulang kali

Kala ulang banjir dapat dipilih dan disesuaikan dengan tipe bangunan air yang akan dirancang. Berdasarkan jenis bangunan air, kriteria pemilihan kala ulang dapat dilihat pada tabel berikut.

Tabel 2. 6 Kala Ulang Berdasarkan Jenis Bangunan Air

No	Jenis Bangunan Air	Kala Ulang (Tahun)
1	Bendungan Urugan Tanah/Batu	1000
2	Bendungan Beton/Batu Kali	500-1000
3	Bendung	50-100
4	Saluran Pengelak Banjir	25-50
5	Tanggul Sungai	10-25
6	Drainase Saluran di Sawah/Pemukiman	5-10

Sumber: Lasmana, 2017

2.19 Permodelan SWMM

SWMM adalah software yang pada awalnya dikembangkan dan digunakan di Amerika Serikat oleh *Environmental Protection Agency* (EPA). Software ini memiliki kemampuan untuk menganalisis masalah kualitas dan kuantitas air yang berkaitan dengan limpasan di kawasan kota. SWMM termasuk dalam model aliran hujan dinamis yang digunakan untuk simulasi dengan durasi yang panjang atau untuk kejadian banjir sesaat. Dalam proses hidrologi di kawasan perkotaan, software ini sering digunakan.

Langkah awal yang dilakukan ialah permodelan drainase pada software SWMM. Sistem drainase yang di simulasikan pada SWMM dibagi menjadi beberapa Subcatchment area. Setelah itu, hasil data dari survey lapangan diinput kedalam permodelan. Objek permodelan SWMM, yaitu:

1. Rain Gauge

Rain Gauge adalah objek yang mewakili curah hujan pada area yang dimodelkan. Data yang digunakan adalah data hujan olahan dari format yang dibutuhkan. Berikut ini adalah beberapa format yang dapat diterapkan dalam simulasi pemodelan:

- a. Intensitas curah hujan
- b. Curah hujan kumulatif
- c. Volume curah hujan
- d. Tipe data hujan
- e. Sumber datanya hujan

f. Interval pencatatan curah hujan

2. Subcatchment

Subcatchment merupakan unit hidrologi yang terletak di permukaan tanah, yang memiliki elemen sistem drainase internal serta topografi yang mengarahkan limpasan permukaan menuju satu titik (outlet).

3. Junction

Junction yakni titik alirannya bertemu. Junction mengilustrasikan bertemunya saluran, parit dalam sistem saluran pembuangan, ataupun pada saluran tertutup. Aliran yang masuk ke dalam sistem drainase haruslah melewati junction. Kelebihan airnya di titik ini bisa mengakibatkan terjadinya genangan serta diilustrasikan menjadi banjir. Sejumlah paramater yang harus dimasukkan ke simulasi permodelan junction yakni:

- a. Elevasi dasar
- b. Tinggi hingga permukaan tanah
- c. Data debit air dari luar (opsional)
- d. Kolam tampungan saat banjir terjadi (opsional)

4. Outfall

Outfall ataupun outfall nodes ialah ujungnnya rangkaian sistem drainase. Titik ini mengilustrasikan muara dari saluran. Flow divider ataupun flow divider nodes ialah titik yang membagikan sejumlah aliran pada sebuah saluran ke saluran lainnya. Satu divider hanya bisa terbagi ke dua aliran.

5. Conduit

Conduit ialah pipa penghubung atau saluran yang bisa memindahkan air dari sebuah nodes ke nodes lainnya dalam sistem pengairan. Penampang saluran conduit mempunyai tiga tipe saluran yakni saluran terbuka, saluran tertutup, ataupun saluran tak beraturan (alam).

6. Storage

Storage yakni tempat penampungan air sementara sebelum di alirkan langsung ke saluran pembuangan. Storage dirancang untuk menahan volume limpasan secara temporer.

7. Orifice

Orifice adalah jenis perangkat untuk mengendalikan aliran, digunakan untuk pelepasan air dari unit penyimpanan atau aliran. Berfungsi juga sebagai pembatas aliran untuk mengendalikan debit dan ketinggian air dalam sistem drainase.

8. Pumps

Pumps digunakan untuk meningkatkan elevasi atau mengangkat air.

Pompa juga berfungsi untuk memindahkan air dari satu lokasi dengan elevasi rendah ke lokasi dengan elevasi tinggi.

2.20 Debit Saluran

Debit saluran merupakan ukuran volume air yang mengalirnya dari sebuah saluran ataupun ruang didalam kurun waktu tertentu. Pengukuran debitnya ini menjadi salah satu parameter utama dalam pengelolaan sumber daya air secara efektif (Rustandi, 2016). Berdasarkan Peraturan Menteri PUPR No. 12/PRT/M/2014, terdapat pehitungan yang dapat digunakan untuk perhitungan dimensi saluran untuk acuan bentuk persegi panjang sebagai berikut:

• Luas Penampang Saluran (A)

$$A = B \times h \tag{2.15}$$

• Keliling Basah Saluran (P)

• Jari-jari Hidrolis (R)

$$R = \frac{A}{P} \qquad 2.17$$

• Kemiringan Dasar Saluran (S)

$$S = \frac{\Delta t}{L} \qquad 2.18$$

• Kecepatan Aliran (V)

$$V = \left(\frac{1}{n}\right) \times R^{2/3} \times S^{1/2}$$
 2. 19

• Debit Saluran (Q)

$$Q = V \times A \qquad \qquad 2.20$$

Keterangan:

B = Lebar bawah (m)

h = Kedalaman Saluran (m)

 $\Delta t = \text{Selisih elevasi (m)}$

L = Panjang saluran (m)

n = Koef. kekasaran manning

2.21 Penelitian Terdahalu

Tabel 2. 7 Penelitian Terdahulu

Judul	Nama	Metode	Hasil
	Penulis)
Analisis	Alfaro Surya	Menghitung	Debit banjir
Penanggulanga	Hadinata	curah hujan	yang melewati
n Genangan Air	(2024)	terencana.	perumahan
pada Perumahan	GII	Besarnya curah	pamulang park
di Kawasan		hujan maksimum	sebesar 68,712
Perkotaan		2,5,10,20,50, dan	m3/s. hasil dari
menggunakan		100 tahun	permodelan
Pompa Banjir		dihitung	pompa banjir
		menggunakan	dengan

Judul	Nama	Metode	Hasil
	Penulis		
		metode distribusi.	kapasitas 0,5
		Dilakukan uji	m3/s secara
		kecocokan	otomatis akan
		sebaran berupa uji	menyala dan
. 1	F	smirnov-	memompa air
, \		kolmogorov dan	langsung
		chi kuadrat.	menuju kali
		Metode rasional	petir apabila
		digunakan untuk	ketinggian air
		mengkalkulasika	sudah mencapai
		n debit banjir	0,5 m dan
		rencana	apabila sudah
		memeperkirakan	berada di
		kapan pompa	ketinggian 0,1
		hidup, mati, dan	akan otomatis
		berhenti.	mati dengan
1			sendirinya.
Analisis	Rafi Arraz	Perhitungan curah	Debit banjir
Pengendalian	Rahmansah	hujan rencana	rencana yang
Banjir dengan	(2022)	dilakukan dengan	melewati sungai
menggunakan		metode distribusi.	cibenda 800,409
Kolam Retensi		Uji kecocokan	m³/s. hasil
dan Pompa		sebaran	perencanaan
Banjir (Studi	$G \coprod$	menggunakan uji	kolam retensi
Kasus Jalan Tol	7	Chi Kuadrat dan	didapatkan hasil
Pondok Aren –		uji Smirnov-	ukuran kolam
Serpong		Kolmogorov.	retensi dengan
KM.8+600)		Debit rencana	kapasitas
		dihitung	sebesar 109,764
		menggunakan	m³ dan luas

Judul	Nama	Metode	Hasil
	Penulis		
		data analisis	36,588 m² unutk
		hidrologi.	kedalaman 3 m.
		Mengevaluasi	Pompa banjir
		jaringan drainase	akan otomatis
- 1		eksisting.	nyala apabila
		Melakukan	ketinggian air
		perencanaan	mencapai 3 m
(-)		kolam retensi	dan akan
		dengan	otomatis mati
		melakuakn	pada ketinggian
		perhitungan	2,5 m. debit air
		volume dan luas	yang di pompa
		kolam retensi.	masuk kedalam
		Merencanakan	kolam retensi
		k <mark>a</mark> pan pompa	adalah 30,409
		hidup dan	m³/s
1		otomatis	
		memompa air	V
		kedalam kolam	
		retensi.	
Analisis	Fariz Adya	Menganalisis data	Didapatkan hasil
Pengadaan	Fathaya,	curah hujan	unit
Pintu Air Dan	Frederik	menggunakan	penyimpanan
Pompa Air	Josep	metode log	satu mengelola
Untuk	Putuhena,	person type III.	curah hujan
Penanggulanga	dan	Melakukan	secara efektif
n Banjir di	Marelianda	simulasi dengan	tanpa meluap.
Perumahan	Al Dianty	software EPA	Unit
Graha Bunga	(2021)	SWMM 5.1.	penyimpanan 2
Pondok Kacang		hyetograf	mengontrol

Judul	Nama	Metode	Hasil
	Penulis		
Barat		digunakan untuk	ketinggian air
Tangerang		menganalisis	secara efektif.
Selatan		intesitas curah	Pompa di
		hujan. Metode	operasikan
. 1	FF	blok bergantian	secara efisien
1		untuk membuat	pada ketinggian
		hytograf. Metode	air 0,8. Analisis
-		kirpich untuk	pengendalian
		menghitung	banjir ini
		waktu	terbukti 💮
		konsentrasi.	berhasil.
Kajian	Fathur Reza	Metode gumbel	Didapatkan hasil
Perencanaan	Al Fatoni,	dilakukan untuk	debit kali tebu
Pompa Banjir	Soebagio	menghitung	adalah 54,33
Pada Kali Tebu	(2019)	intesitas curah	m³/dtk, debit
Tambak Wedi		hujan. Metode	puncak banjir
Surabaya		rasioanal	60,63 m ³ /dtk,
		digunakan untuk	total debit
		menghitung debit	rencana 50
3		banjir. Metode	tahun 116,98
		HSS nakayasu	m³/dtk, maka
4		digunakan untuk	diperlukan 9
1 ///		menghitung debit	pompa banjir
' V	$G \coprod$	puncak banjir.	yang
	7	Metode kurva	berkapasitas 2
		massa ganda	m³/dtk dengan
		untuk pengujian	lama waktu
		konsistensi curah	pengurasan
		hujan.	adalah 4,07 jam.

Judul	Nama	Metode	Hasil
Judui		Metode	паѕп
	Penulis		
Kajian	Heru	Permodelan	Didapatkan
Penanganan	gunawan	numerik 1	hasil, area banjir
Banjir Dengan	Apriadi,	dimensi	berkurang
Sistem Pompa	Anis Saggaf,	menggunakan	dengan
Di Sungai	Sarino	MIKE 11 dan 2	menggunakan
Bendung, Kota	(2021)	dimensi	pompa menjadi
Palembang		menggunakan	0,74 km ² .
		MIKE FLOOD.	Ketinggian
		Simulasi dengan	banjir berkurang
		berbagai skenario	0,6 m sedangkan
		alternative,	durasi genangan
		sedangkan untuk	berkurang 8,5
		kalibrasi model	jam. Scenario
		dilakukan dengan	optimal
		pengukuran	<mark>mengg</mark> unakan 6
		kecepatan aliran.	pompa
1			berkapsitas 36
			m³/s
Pemodelan Pola	Rizka	Analisis hidrologi	Debit
Operasi Sistem	Arbaningru	untuk perhitungan	Maksimum yang
Pompa Pada	m (2018)	debit banjir	direncanakan
Desain Polder		dilakukan.	untuk kolam
Guna Mitigasi		Metode poligon	retensi adalah
Banjir Dan Rob	$G \coprod$	Thiessen	138 m³/s. Luas
Di Wilayah	7	digunakan untuk	kolam retensi
Semarang		pengaruh stasiun	adalah 210
Timur		curah hujan.	hektar dengan
		Analisis statistik	kedalaman 3,7
		termasuk tes Chi-	m. Kapasitas
		square dan	pompa yang

Judul	Nama	Metode	Hasil
	Penulis		
		Smirnov-	dibutuhkan
		Kolmogorov.	adalah 15 m³/s,
		Model perangkat	yang terdiri dari
		lunak HEC-HMS	2 unit pompa
. 1	F	4.0 kolam retensi	berkapasitas 2,5
1 N		dan sistem	m³/s dan 2 unit
		pompa. Distribusi	pompa
<u> </u>		Gumbel, Normal,	berkapasitas 5
		log Normal, dan	m³/s.
		Log Pearson III	, ()
		diterapkan.	
Studi Kasus	Bakhtiar	Penelitian ini	Evaluasi sistem
Pemodelan	(2024)	menggunakan	drainase
Operasi Pompa		metodologi survei	mengidentifikas
Banjir Kawasan		l <mark>ap</mark> angan untuk	<mark>i masa</mark> lah banjir
Jl. Madukoro		pengumpulan	di wilayah
Kota Semarang		data. Data primer	Madukoro.
		dikumpulkan	Debit banjir
		melalui survei	yang
		topografi dan	direncanakan
		inventaris pompa	dihitung sebesar
4		yang ada. Data	12,36 m ³ /s untuk
' ///		sekunder	penyimpanan
· V	(711	mencakup	panjang
	9	informasi dari	Madukoro. Dua
		BMKG dan	pompa
		lembaga terkait.	
		Analisis data	m³/s dirancang
		melibatkan	untuk
		analisis hidrologi	pengelolaan

Judul	Nama	Metode	Hasil
	Penulis		
		dan pompa	banjir. Dimensi
		hidrograf. Studi	penyimpanan
		ini mencakup	diatur ke kondisi
		identifikasi	yang ada untuk
. \	EH	masalah dan	pengendalian
		langkah-langkah	banjir yang
		tinjauan literatur.	efektif

