turnitingJ)
Digital Receipt

This receipt acknowledges that Turnitin received your paper. Below you will find the receipt
information regarding your submission.

The first page of your submissions is displayed below.

Submission author: Auralius Manurung

Assignment title: No repository
Submission title: YADPF: A reusable deterministic dynamic programming impl...
B.A.JI.6_Uddin_2022_Software_X.pdf

781.93K

Page count: 6

4,618

22,889

10-Apr-2022 06:43AM (UTC-0700)

1806624123

File name:

File size:

Word count:
Character count:
Submission date:

Submission ID:

ScftvareX 17 (2022) 101001

Contents lists available at ScienceDirect

SoftwareX [

joumal homepage: www.elsevier. comlocatelsoftx

Original software publication

YADPF: A reusable deterministic dynamic programming
implementation in MATLAB

Auralius Manurung **, Lisa Kristiana ", Nur Uddin*

*Univerites Pertamin, fakart, 12220, Indonesic,

> nstitu Teknologi Nasional Bandung, Bandung, 40124, ndonesia
“Universitas Pemibangunan Jaya. Banten, 15413, Indonesio

ARTICLE INFO ABSTRACT

Irtice istony
Received 24 November 2021

Received i revised form 15 January 2022
Accepted 25 January 2022

This paper introduces the VADPF package. a collection of reusable MATLAB functions to solve
deterministi discrete-time optimal control problems using a dynamic programming algorithm. For
finite- and infinite-horizon optimal control problems, two types of dynamic programming algorithms
are implemented: backward dynamic programming and value iteration. Like other implementations,
users must provide the discretized state and input variables, the model dynamic equation, the terminal

Keywords
function. To more mofivate users to use this MATLAB function

Dynamic programiming cost function, and the stage cost
Optimal contral package, we also provide more than ten academic case studies on how the YADPF function package
Dynamic optimization

can salve dynamic optimization problems with detailed step-by-step instructions. The provided guides
Reinlorcement learing i help users, especiall,

d t
programming experiences with minimal coding expertisc.
©2022 The Author(s). g

CBYlicense
(hutp:fcreativecommons.orgllicenses/by/4.0]).

Carent code version
Permanent ink to codelrepositry used for this code version
Code Ocean cmpute capsule 5
Legal Code License MIT lcense
Code versioning system used st
Software code languages, tools, and services used

Compiltion requirements, operating emvironments & dependencies

Vi
s gt com ElsevierSoftwareX|SOFTX.D-21.00222

If avalable Link to developer documentationjmanial
Support email for questions

1. Motivation and significance

mamic programming (DP) was first introduced in [1] to
solve optimal control problems (OCPs) where the solution is a
sequence of inputs within a predefined time horizon that max-
imizes or minimizes an objective function. This is known as
dynamic optimization or multistage decision problem. Th

many examples of how DP are used in real applications, such
as in energy management systems [2] and in resource allocation
problems [3].

* Corresponding author.
Emai address: aura

ungoicee org (Auralius Manurung)

hts:doirg/10.10 1530112022, 101

001
23527110/ 2022 The Author(s) Published by Elsevier Y. Thi is an open access aricle under the CC BY license (htp:crea

Copyright 2022 Turnitin. All rights reserved.

Since the introduction of DP, there have been many variations
of DP. Ina 3 fied into
exact dynamic programming (EDP) and approximate dynamic

programming (ADP). There are very few EDP implementations
as MATLAB reusable functions, such as in [4,5]. Besides these
two implementation which is only designed for deterministic
0CPs, there s also a more sophisticated toolbox with several DP
algorithms implemented that can be used for both stochastic and
deterministic OCPs [5].

Besides EDP and ADP, other methods which use nonlinear
programming (NLP) techniques can also be used to solve OCPs,
I fact, ADP and NLP are more suitable for a complex system,
as opposed to EDP. On another hand, EDP is more common in

commens.orglcenses by/ 40/}

YADPF: A reusable deterministic
dynamic programming
implementation in MATLAB

by Auralius Manurung

Submission date: 10-Apr-2022 06:43AM (UTC-0700)
Submission ID: 1806624123

File name: B.AJI.6_Uddin_2022_Software_X.pdf (781.93K)
Word count: 4618

Character count: 22889

SoftwareX 17 (2022) 101001

journal homepage: www.elsevier.com/locate/softx

Contents lists available at ScienceDirect

SoftwareX

Original software publication

YADPF: A reusable deterministic dynamic programming)

implementation in MATLAB

Auralius Manurung **, Lisa Kristiana °, Nur Uddin ¢

* Universitas Pertamina, Jakarta, 12220, Indonesia,
" Institut Teknologi Nasional Bandung, Bandung, 40124, Indonesia
© Universitas Pembangunan Jaya, Banten, 15413, Indonesia

Cheak for
updates

ARTICLE INFO ABSTRACT

Article history:

Received 24 November 2021

Received in revised form 15 January 2022
Accepted 25 January 2022

Keywords:

Dynamic programming
Optimal control
Dynamic optimization
Reinforcement learning

This paper introduces the YADPF package, a collection of reusable MATLAB functions to solve
deterministic discrete-time optimal control problems using a dynamic programming algorithm. For
finite- and infinite-horizon optimal control problems, two types of dynamic programming algorithms
are implemented: backward dynamic programming and value iteration. Like other implementations,
users must provide the discretized state and input variables, the model dynamic equation, the terminal
cost function, and the stage cost function. To more motivate users to use this MATLAB function
package, we also provide more than ten academic case studies on how the YADPF function package
can solve dynamic optimization problems with detailed step-by-step instructions. The provided guides
and examples are expected to help users, especially, students and researchers initiate instant dynamic

programming experiences with minimal coding expertise.
© 2022 The Author(s). Published by Elsevier B.V. Thisis an open access article under the CC BY license

(http://creativecommons.org/licenses/by [4.0().

Current code version

Permanent link to codefrepository used for this code version

Code Ocean compute capsule

Legal Code License

Code versioning system used

Software code languages, tools, and services used

Compilation requirements, operating environments & dependencies
If available Link to developer documentation/manual

Support email for questions

v1.0.10
https:fjgithub.com/ElsevierSoftwareX|SOFTX-D-21-00222
MIT license

zit

MATLAB

https:ffauralius github.io/yad pf}

auralius.manurung@ieee org

1. Motivation and significance

Dynamic programming (DP) was first introduced in [1] to
solve optimal control problems (OCPs) where the solution is a
sequence of inputs within a predefined time horizon that max-
imizes or minimizes an objective function. This is known as
dynamic optimization or multistage decision problem. There are
many examples of how DP are used in real applications, such
as in energy management systems [2] and in resource allocation
problems [3].

* Corresponding author.
E-mail address: auralius.manurung@ieee.org (Auralius Manurung).

https://doi.org/10.1016/j.softx2022.101001

Since the introduction of DP, there have been many variations
of DP. In a broader sense, DP can be classified into two categories:
exact dynamic programming (EDP) and approximate dynamic
programming (ADP). There are very few EDP implementations
as MATLAB reusable functions, such as in [4,5]. Besides these
two implementation which is only designed for deterministic
OCPs, there is also a more sophisticated toolbox with several DP
algorithms implemented that can be used for both stochastic and
deterministic OCPs [G].

Besides EDP and ADP, other methods which use nonlinear
programming (NLP) techniques can also be used to solve OCPs.
In fact, ADP and NLP are more suitable for a complex system,
as opposed to EDP. On another hand, EDP is more common in

2352-7110/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses /by/4.0/).

Auralius Manurung, Lisa Kristiana and Nur Uddin

an academic environment for less complex systems due to the
exactness of the provided solutions and the guarantee for global
optimality [7].

As previously mentioned, when the systems are complex, ADP
and NLP are more actually favorable with many implementations
available both commercially and non-commercially. The reason
for such a popularity is because ADP and NLP are more computa-
tionally efficient than EDP [8]. EDP visits all possible state values
and tests them with all possible input values, which makes EDP
a very resource-demanding method [7].

Additionally, many researchers often choose to develop their
own EDP implementation, which is tailored specifically to solve
one particular dynamic optimization problem. Their implemen-
tations are often equipped with advanced features, such as with
adaptive discretization [9]. However, there is no publicly available
implementations.

Therefore, we decided to add a new item into the database
of reusable exact dynamic programming functions by proposing
another implementation of DP (backward DP and value iteration).
We named our implementation with the YADPF: Yet Another
Dynamic Programming Function. We strictly based our imple-
mentation on Bellman's basic dynamic programming algorithm
for deterministic OCPs. Thus, our work will be in the same group
asin [45].

We selected MATLAB since it is prevalent among control engi-
neers and researchers. In our MATLAB implementation, we strive
for fast and efficient performance by exploiting the vectorization
features that MATLAB offers. We also include the YADPF package
with many academic examples which we will discuss in later part
of this paper.

2. Software description

Backward DP in YADPF package is used to solve an OCP with
the following formulation.

rrLllin v (xy) + ZE 'k (X)
ke
p: subject to xﬁﬂ =f[xIM,_ uIM,_ k)

x =A and

(1)

XN=B

The results obtained from solving the OCP P above is a control
sequence u;, defined along a finite time horizon (horizon length
of N+ 1,fromk=0to k=N).

In Eq. (1), we refer XIM as the signal x up-sampled by factor
of M using the zero order hold (ZOH) interpolation. Further,
X1 = flx, ug, k) describes the system's dynamics whereas the
stage cost and the terminal cost are described by g, and gy,
respectively. As for x;, and uy, these two variables represent the
state variables and the input variables, respectively. The initial
state is given by xp and the final state is given by xy. The state
variables, the input variables, and the time are bounded and
discretized. The discretized states are called the nodes and the
discretized time are called the stages.

Besides backward DP, the YADPF package is also equipped
with value iteration algorithm to solve an OCP that does not
explicitly have a predefined horizon length and terminal cost.
Such an OCP is formulated in Eq. (2).

N-1
min Nll[r_jczojrgk (X, Uy)
. M Mo tM
Q: subject to XII] =f(x, ,_uI k) (2)
Xp =A
k=0,1,...

D=y =1

SoftwareX 17 (2022) 101001

In Eq. (2), y is the discounting factor which reflects how the
future values are being valued. The smaller y» value contributes
to the faster convergence but less-accurate solutions.

2.1. Software architecture

Backward DP starts from the terminal stage and moves to
the initial stage. The algorithm visits all nodes in each step and
calculates the stage cost. Before calculating the stage cost, the
algorithm first calculates the system's dynamic one step forward.
This whole process is iterative and can be made faster.

To make the process above faster, in our implementation,
we first calculate the system’s dynamic one step forward for all
existing nodes. We visit all nodes and apply all inputs to the
system's dynamical model. We then keep the results in a lookup
table for later use during the stage cost calculation. With this
lookup table, we can avoid this repetitive computation of the
system's dynamics and avoid using a for-loop. As a result, we
now have a matrix operation instead of having a for-loop. Thus,
we can unleash the full potential of MATLAB's engine for matrix
computations.

However, the process of creating a look-up table can easily
consume all computation power, including memory space caus-
ing the whole system to be unresponsive. This issue is likely to
happen when working with a high-dimension system in a less-
powerful computation system. It is also interesting to notice that
this process might be pretty similar to bootstrapping process
in reinforcement learning. However, in reinforcement learning,
the bootstrapping process involves a more complex estimation
process [10].

Besides backward DP, in YADPF, we also implement value
iteration, which is in principal a variation of DP implementation.
Unlike backward DP, the iteration in value iteration is not stage-
based. The iteration terminates based on the convergence of some
calculated costs. Thus, value iteration is an infinite horizon DP.
More details on value iteration can be found in a popular textbook
by Bertsekas' [11].

With value iteration, we can build a control table (policy
matrix) such that a dynamical system optimally evolves from
any given initial state to a targeted terminal state. Compared to
backward DP, value iteration demands less memory and requires
no predefined horizon length. Therefore, it becomes a better
alternative for infinite horizon optimization problem.

2.2. Software functionalities

The implementation of DP requires a discretized simulation
environment. In this discretized environment, the states, inputs,
and time are all discretized. When using the YADPF package, users
are responsible for the discretization process.

In addition to the discretization process, users must create
three functions that look like the following.

function x_next = state_update_fn(X, U, dt) 1
% Describe the system dynamics here 2
end 3
4

function] = stage_cost_fn(X, U, k, dt) 5
% Describe the stage cost function here [
end 7
8

function | = terminal_cost_fn(X) 9
% Desired terminal state cost function here 10
end 11

Listing 1: The structure of the state update, stage cost, and
terminal cost functions.

Auralius Manurung, Lisa Kristiana and Nur Uddin

In Listing 1, state_update_fn, stage_cost_fn, and ter-
minal _cost_fn are the state update function, stage cost func-
tion and the terminal cost function, respectively. The parameters:
¥, U, and dt represent state variables, input variables, and time
interval for the OCP, respectively. It is important to notice that the
function state_update_fn can only accept non-autonomous
dynamical system since there is no information on the current
stage available. However, in stage_cost_fn function, there is
parameter k, which is the number of the current stage and can
be used to handle time-weighted objective function.

In the next step, handles to the three previously mentioned
functions are then registered to a data structure (named as dpf).
We then send this data structure to the DP solver, as shown in
the Listing 2 below.

% Setup: 2 states and 1 input 1
P=-12 : 0001 : 0.5; 2
V= —-007 : 0.0001 : 0.07; 3
U=[-101]; 4

5
dpf.states = {P V}; [
dpf.inputs = {U}: 7
dpf.T_ocp =1; 8
dpf.T_dyn =1 9
dpf. n_horizon = 100; 10
dpf.state_update_fn = @state_update_fn; 11
dpf.stage_cost_fn = @stage_cost_fn; 12
dpf.terminal_cost_fn = @terminal_cost_fn; 13

14
% Create and run the solver 15
dpf = yadpf_solve(dpf): 16

17
% Trace, initial states: [—0.5 0] 18
dpf = yadpf_trace(dpf, [-05 0]); 19

20
% Plot the results 21
yadpf_plot(dpf, " '): 2

Listing 2: In backward DP, a structure is used to hold a
necessary information.

In Listing 2, line 9 to 16, we can see a simple data structure
dpf is being used to hold all information on the OCP. Next,
yadpf _solve function is called where the DP is implemented.
Notice that backward DP solves an OCP for all possible initial state
values (nodes). Thus, we have to trace the specific solution for
the initial state values that we are interested with. This process
is done with the yadpf_trace function. Finally, we can plot the
results by using yadpf_plot function.

As for value iteration, we must also discretize the OCP as in
backward DP. However, unlike in backward DP, value iteration re-
quires only two user-defined functions: the state update function,
and the stage cost function. The prototypes of these two functions
are identical with those in backward DP (see Listing 1). Horizon
length is no longer needed. Instead, a new variable is introduced
for setting the maximum number of iterations (see Listing 3, line
10).

% Setup: 2 states and 1 input 1
P=-12 : 0001 : 0.5; 2
V= —-007 : 0.0001 : 0.07; 3
U=[-101]; 4

5
dpf.states = {P V}; [
dpf.inputs = {U}: 7
dpf.T_ocp =1; 8
dpf.T_dyn =1 9
dpf. max_iter = 10000; 10
dpf.state_update_fn = @state_update_fn; 11
dpf.stage_cost_fn = @stage_cost_fn; 12

13
% Create and run the solver 14
dpf = yadpf_visolve{dpf, 0.99); 15

16
% Trace, initial states: [—0.5 0] 17
dpf = yadpf_vitrace{dpf, [—-05 0]); 18

19

SoftwareX 17 (2022) 101001

% Plot the results 20
yvadpf_plot{dpf, " '): 21

Listing 3: MATLAB code for value iteration in the YADPF is very
similar to backward DP.

Value iteration is executed in line 19 of Listing 2. Here, we
selected ¥ = 0.9. Like backward DP, value iteration solves an
OCP for all possible initial state values (nodes). Thus, we have
to trace the specific solution for the initial state values that we
are interested in by using the yadpf_vitrace function. Finally,
plotting the results can be done by using the same plotting
function as in backward DP: yadpf_plot.

3. llustrative examples

In this section, we present two sets of complete working codes
to demonstrate the functionalities of the YADPF package: the
mass—-damper's time-optimal control problem and the Sutton's
mountain car problem. In both problems, we use the YADPF
package to plan for time-optimal motions to reach the given
targets.

Besides these two problems, the YADPF package includes sev-
eral more academic-oriented examples, such as the stabilization
of an F8 aircraft [12-14], Dubin's car [15,16], hanging piece-
wise mass-spring system [17], Lotka-Volterra fishery [5,18], a
stirred-tank mixer [19], and finding the shortest path on a terrain.

3.1. The mass-damper’s optimal control problem

Assume that we have a mass (m = 1 [kilogram]) and a damper
(b = 0.1 [Newtonxsecond/meter]) with two state variables
(position x; [meter] and velocity v, [meter/second]), and one
input variable (external force f;, [Newton]). The applied force that
can be applies ranges from —4 Newtons to 4 Newtons. Our goal
is to move the mass from x = 0 to x = 0.5 as fast as possible but
with minimal input (energy). When the mass arrives at the target
position, its speed should be as close as possible to zero.

Based on the statements above, we can formulate the OCP as
follows.

N1

min o 2+“X—x2+a,__,2
fiexy.vy 1§fk 2(}' N) 3(11-]_N)

subject to :

Xpt1 _ 1 At X 0
[L‘kll]_[o 1_%4f][1’k]+[mim]fk)

fi=F €{—4,—-39,—-338,...,3.8 39,4}
X, = X, € {0,0.001,0.002, ..., 1}
v, =V, € {0, 0.001, 0.002, ..., 1}
Xf = 0.5
vy =0
In Eq. (3). w1, w2, and «3 are the control gains for the force
input, the position and the velocity, respectively, whose values
are tuned heuristically. Let us set the sampling period for the
OCP to 0.1 s and for the dynamic simulation to 0.01 s. Listing 4

contains MATLAB implementation of the OCP in Eq. (3) by using
the YADPF package.

t Setup the states and the inputs 1
X= 0 :0001 : 1; % Position 2
V= 0:0001:1; locity 3
F=-4:0.1 : 4; % Applied force 4

5
% Setup the horizon [
TF = 1; 7
T_ocp = 0.1; 8
t =0 : T_ocp : Tf; 9

Auralius Manurung, Lisa Kristiana and Nur Uddin

o 0.2 0.4 0.6 0.8 1
1
Sp
ot
_5 _____ - — = M— 1 1 I
] 0.2 0.4 0.8 08 1

t

Fig. 1. Time-optimal motion of a mass-damper system, computed by backward
DF.

dpf.states = {X. v}; 10
dpf.inputs = {F}: 1
dpf.T_ocp = T_ocp: 12
dpf.T_dyn = 0.01; 13
dpf. n_horizon = length{t); 14
dpf.state_update_fn = @state_update_fn; 15
dpf.stage_cost_fn = @stage_cost_fn; 16
dpf.terminal_cost_fn = @terminal_cost_fn; 17
18
% Run, trace, and plot 19
% Initial states: [0 0] 20
dpf = yadpf_solve(dpf): 21
dpf = yadpf_trace({dpf, [0 0]):
yvadpf_plot(dpf, " ');

% Optional: draw the reachability plot
vadpf_rplot(dpf, [0.5 0], 0.1):

%% The state unpdate funtion

unction X = state_update_fn(X, F, dt)
= 1; * Mass

= 0.1; % Damping coefficient

o g

X{1} = X{1} + dtaX{2}:
X{2} = X{2} — b/medt.«X{2} + dt/mxF{1};

% The stage cost function

function] = stage_cost_fn(X, F, k, dt)
] = dtxF{1}.%2;

end

%% The terminal cost function
function] = terminal_cost_fn(X)
xf = [0.5 0]:

% Control gains
alphal = 1000;
alpha2 = 100;

CEEASGEO BB EYEHEHME SEEYEEEREN

1 = alphal#(X{1}—xf(1))."2 + ...
alpha2#(X{2}—xf(2)).°2; 51
end 52

Listing 4: Time-optimal motion of a mass-damper system with
backward DP.

We first guess the horizon length in Listing 4, lines 7 to 9 since
it is not known yet. In a typical time-optimal control problem, we
can avoid guessing by using value iteration. Value iteration and
backward DP on the problem described in Eq. (3) give us very
similar results, as shown in Fig. 1. While backward DP generates
a reachability plot (see Fig. 2), value iteration generates a policy
matrix that can also be presented as a plot (see Fig. 3).

SoftwareX 17 (2022) 101001

Terminal states

Stage-k

Fig. 2. Reachability plot by backward DP for the time-optimal motion of the
mass—-damper system.

Initial states— 4

4. 2
2 - 1
= 0- 0
2 K
4 -2
o
-3
4

Fig. 3. Policy matrix generated by value iteration for the time-optimal motion
of the mass-damper system.

Importantly, we would like to point out that the present
OCP is not a solid time-optimal control problem. Implementing
a time-optimal control problem in DP is not a straightforward
process. The applied objective function here minimizes the sum
of squared errors along a predefined time horizon. However,
switching actions appear for the input sequence by applying very
high control gains. Bang-bang action typically appears in a time-
optimal control problem. Nevertheless, this argument requires
further validation.

3.2. Sutton's mountain car problem

The mountain car problem is a widespread problem that was
initially proposed by Moore in [20] and popularized by Sutton and
Barto in their textbook [21]. Since then, it has become a common
toy problem for reinforcement learning algorithm testings with
many variations. The problem that we use in this paper is similar
to the problem found in [21]. Reformulating Sutton's mountain
car problem as an infinite-horizon OCP with a discount factor of

Auralius Manurung, Lisa Kristiana and Nur Uddin

.0——_/L—

aait)

01 L L L L L L |
4]

it
o
T

A L L L L L L |
o 20 40 60 &0 100 120 140
t

Fig. 4. The optimal solution on Sutton's mountain car problem, computed by
backward DP.

y gives us Eq. (4).
min y {m (xy — 0.5)% + urzicN}
g

subject to:
X1 = Xp + Xpp
X g — X + 0.001u; — 0.0025 cos (3x1)
X € Xy = {—1.2,-1.199, ...,0.5}
i € X, = {—0.07, —0.0060, ..., 0.07}
u € Uy ={-1.0,1}
k=0,1,...

As can bee seen from Eq. (4), y is the discount factor which
is set to 0.99. The car has two state variables: the car's position
(xx) and velocity (vy); and one input variable: the car's engine
throttle (uy). Two control gains are introduced, ¢y and &3, in order
to regulate the car's position and wvelocity, respectively. These
control gains are tuned heuristically. Listing 5 contains MATLAB

implementation of the OCP in Eq. (4) by using the YADPF package.
The results are presented in Figs. 4 and 5.

(4)

Setup the states and the inputs 1
P=-12 : 0001 : 0.5; 2
V= —-007 : 0.0001 : 0.07; 3
U=[-101]; 4

5
dpf.states = {P V}; [
dpf.inputs = {U}: 7
dpf.T_ocp =1; 8

SoftwareX 17 (2022) 101001

dpf.T_dyn =1; 9
dpf.max_iter = 1500; 10
dpf.state_update_fn = @state_update_fn; 11
dpf.stage_cost_fn = @stage_cost_fn; 12

13
% Run and trace 14
% From [—0.5 0] to [0.5 0] 15
dpf = yadpf_visolve (dpf, 0.99); 16
dpf = yadpf_vitrace (dpf, [—0.5 0], [0.5 0]); 17
yvadpf_plot{dpf, " '): 18

19
% Policy plot 20
yadpf_pplot{dpf) 21

22
%% The state update function 23
function X = state_update_fn(X, U, ~) 24
K2} = X{2} + 0.001+U{1} — 0.0025%cos(3I+X[1}); 25
X1} = X{1} + X{2}; 26

27
¢ Hitting the left wall 28
[r.c] = find (X{1}{:.:) <= —12); 29
X{2}(r.c) = 0.001; & Inelastic wall 30

31
% Hitting the right wall 32
[r,c] = find (X{1}({:.:) »= 0.5); 33
X{2}r.c) = 0; = Stop! 34
end 35

36
%% The stage cost function 37
function] = stage_cost_fn(X, U, k, =) 38
alphal = 1000; 30
alpha? = 1000; 40

41
] = alphal#(X{1}-0.5).*2 + alpha2sX{2}.72; 42
end 43

Listing 5: Sutton's mountain car with value iteration.

4. Impact

DP provides golden standards in dynamic optimization due to
the exactness of the solution that it provides. The sub-optimality
of the solutions is caused by the limitations introduced during
the discretization process. However, DP requires a large memory
capacity, making it unsuitable for complex systems.

Therefore, our DP implementation is oriented towards the aca-
demic environment: for learning, teaching, and research. We also
add extra capabilities to generate two technical plots: reachability
and policy-matrix plots. These plots can be generated for low
dimension systems with one and two state variables. Moreover,
with value iteration implemented in addition to backward DP, the
YADPF package can address both finite and infinite horizon OCPs.

We are currently using the YADPF package for theoretical
research in optimal controls. We have more flexibility in imple-
menting time-optimal control for nonlinear systems thanks to
separate sampling periods for the OCP and the dynamic sim-
ulation. The selection of OCP's sampling period may affect the

12 i
008 006 004 002 0 002 004 005 008

Fig. 5. Left figure shows the very complicated reachability plot with many unconnected regions generated by backward DP. The right figure shows the policy matrix
generated by value iteration. Very similar optimal state trajectories are observed with the two methods.

Auralius Manurung, Lisa Kristiana and Nur Uddin

switching actions that typically appear in a time-optimal control
problem.

The YADPF source code had been made public to the MATLAB
community, along with detailed documentation on how to use it.
Thus, we are sure that the YADPF package can benefit researchers
in dynamic programming and optimization, especially those with
relatively weak backgrounds in optimal control theory.

5. Conclusion

This paper promotes dynamic programming in general and
specifically the YADPF package for a generic dynamic program-
ming implementation in MATLAB. The introduced YADPF package
enables students and researchers to solve dynamic optimization
problems with finite and infinite horizons. In this paper, we have
also shown that it is relatively easy to use the YADPF package.
Therefore, it can become an efficient tool for research, learning,
and teaching in the area of dynamic optimization as well as in
reinforcement learning.

In the near future, we plan to use the YADPF package for
teaching advanced elective courses at the university while con-
tinuously adding more solved problems in the documentation
as examples. We expect to expose the YADPF package to many
different use scenarios. Further, we already have several devel-
opment ideas for the YADPF package for our long-term plan. The
first is to implement a selected variation of ADP and the second
is to implement a stochastic DP.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

References

[1] Bellman R. Dynamic programming. Princeton, New Jersey, USA: Princeton
University Press; 1957,

[2] Jamal S, Tan NML, Pasupuleti). A review of energy management and
power management systems for microgrid and nanogrid applications.
Sustainability 2021;13(18):10331. htp://dx.doLorg/ 10.3390/su131810331.

[3] Forootani A, lervolino R, Tipaldi M, Neilson]. Approximate dynamic pro-
gramming for stochastic resource allocation problems. IEEE/CAA | Automat
Sinica 2020;7(4):975-90. http://dx.doi.org/10.1109(JA5.2020.1003231.

(4

(5

|6

(7

8

9

(10]

(1]

(2]

(13]

(14]

(15]

(16]

(7]

(18]

(19]

(20]

(21]

SoftwareX 17 (2022) 101001

Miretti F, Misul D, Spessa E. DynaProg: Deterministic dynamic program-
ming solver for finite horizon multi-stage decision problems. SoftwareX
2021:14:100690. hrep: (/dx.doi.org/10.1016/js0ftx.2021.100690.
Sundstrom 0O, Guzzella L. A generic dynamic programming matlab function.
In: 18th IEEE international conference on control applications, no. 7. Saint
Petersburg, Russia; 2009, p. 1625-30. hup://dx.doLorg/10.1109/CCA2009.
5281131

Chadés I, Chapron G, Cros M-], Garcia F, Sabbadin R. MDPtoolbox: a multi-
platform toolbox to solve stochastic dynamic programming problems,
Ecography 2014;37(9):916-20. http://dxdoiorg/ 101111 /ecog 00888,
Elbert P, Ebbesen S, Guzzella L. Implementation of dynamic programming
for n-dimensional optimal control problems with final state constraints,
IEEE Trans Control Syst Technol 2013:21(3):924-31. htrp://dx.doiorg/10.
1109{TCST.2012.2190935.

O'Connell JF, Mumford CL. An exact dynamic programming based method
to solve optimisation problems using GPUs. In: 2014 Second international
symposium on computing and networking. 2014, p. 347-53. htip:|/dx.doi.
org/10.1109/CANDAR.2014.27.

Griine L, Semmler W. Using dynamic programming with adaptive grid
scheme for optimal control problems in economics.] Econ Dyn Control
2004;28(12):2427-56. hup:f/dxdoi.org(10.1016/)jedc.2003.11.002.
Osband I, Blundell C, Pritzel A, Van Roy B. Deep exploration via boot-
strapped DQM. In: Advances in neural information processing systems 29,
Barcelona, Spain; 2016, arXiv:1602.04621.

Bertsekas DP. Dynamic programming and optimal control, Vol. L 3rd ed.
Belmont, MA, USA: Athena Scientific; 2005.

Garrard WL, Jordan JM. Design of nonlinear automatic flight control
systems. Automatica 1977;13(5):497-505. hitp://dxdoiorg(10.1016/0005-
1098(77190070-X.

Banks SP, Mhana KJ. Optimal control and stabilization for nonlinear
systems. IMA] Math Control Inf 1992:9(2):179-96. http:|/dx.doi.org/10.
1093 {imamci/9.2.179.

Kaya CY, Noakes JL. Computations and time-optimal controls. Optim
Control Appl Methods 1996:17(3):171-85. http://dx.doiorg/ 10,1002 SICH)
1099-1514{199607/09)17:3< 171::AID-0CA571>3.0.C0; 2-9.

Dubins LE. On curves of minimal length with a constraint on average
curvature, and with prescribed initial and terminal positions and tangents.
Am] Math 1957:79(3):497. http://dxdoiorg/10.2307/ 2372560,

Wolek A, Cliff EM, Woolsey CA. Time-optimal path planning for a kinematic
car with variable speed.] Guid, Control, Dyn 2016;39(10):2374-90. http:
{fdx.doi.org/10.2514/1.G001317.

Lobo MS, Vandenberghe L, Boyd S, Lebret H. Applications of second-
order cone programming. Linear Algebra Appl 1998:284{1-3):193-228.
http://dx.doiorg/10.1016/50024-3795(9810032-0,

Sundstrém O, Ambiihl D, Guzzella L. On implementation of dynamic
programming for optimal control problems with final state constraints. Oil
Gas 5ci Technol - Rev IFP 2010:65(1):91-102. hrep: |/ /dx.dolorg/10.2516/
02s0{2009020,

Hasdorff L. Gradient optimization and
Interscience Publication: 1976

Moore AW. Efficient memory-based learning for
thesis), University of Cambridge; 1990.

Sutton RS, Barto AG. Reinforcement leaming: An introduction. 2nd ed.. The
MIT Press; 2018.

nonlinear control. A Wiley-

robot control (Ph.D.

YADPF: A reusable deterministic dynamic programming
implementation in MATLAB

ORIGINALITY REPORT

14, 144 0« Os

SIMILARITY INDEX INTERNET SOURCES PUBLICATIONS STUDENT PAPERS

PRIMARY SOURCES

auralius.github.io 1 OO
Internet Source %
doaj.or

L8 o
Internet Source 0

Exclude quotes Off Exclude matches <3%

Exclude bibliography On

