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deterministic OCPs [5].
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programming (NLP) techniques can also be used to solve OCPs,
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1. Motivation and significance

Dynamic programming (DP) was first introduced in [1] to
solve optimal control problems (OCPs) where the solution is a
sequence of inputs within a predefined time horizon that max-
imizes or minimizes an objective function. This is known as
dynamic optimization or multistage decision problem. There are
many examples of how DP are used in real applications, such
as in energy management systems [2] and in resource allocation
problems [3].
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Since the introduction of DP, there have been many variations
of DP. In a broader sense, DP can be classified into two categories:
exact dynamic programming (EDP) and approximate dynamic
programming (ADP). There are very few EDP implementations
as MATLAB reusable functions, such as in [4,5]. Besides these
two implementation which is only designed for deterministic
OCPs, there is also a more sophisticated toolbox with several DP
algorithms implemented that can be used for both stochastic and
deterministic OCPs [G].

Besides EDP and ADP, other methods which use nonlinear
programming (NLP) techniques can also be used to solve OCPs.
In fact, ADP and NLP are more suitable for a complex system,
as opposed to EDP. On another hand, EDP is more common in
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an academic environment for less complex systems due to the
exactness of the provided solutions and the guarantee for global
optimality [7].

As previously mentioned, when the systems are complex, ADP
and NLP are more actually favorable with many implementations
available both commercially and non-commercially. The reason
for such a popularity is because ADP and NLP are more computa-
tionally efficient than EDP [8]. EDP visits all possible state values
and tests them with all possible input values, which makes EDP
a very resource-demanding method [7].

Additionally, many researchers often choose to develop their
own EDP implementation, which is tailored specifically to solve
one particular dynamic optimization problem. Their implemen-
tations are often equipped with advanced features, such as with
adaptive discretization [9]. However, there is no publicly available
implementations.

Therefore, we decided to add a new item into the database
of reusable exact dynamic programming functions by proposing
another implementation of DP (backward DP and value iteration).
We named our implementation with the YADPF: Yet Another
Dynamic Programming Function. We strictly based our imple-
mentation on Bellman's basic dynamic programming algorithm
for deterministic OCPs. Thus, our work will be in the same group
asin [45].

We selected MATLAB since it is prevalent among control engi-
neers and researchers. In our MATLAB implementation, we strive
for fast and efficient performance by exploiting the vectorization
features that MATLAB offers. We also include the YADPF package
with many academic examples which we will discuss in later part
of this paper.

2. Software description

Backward DP in YADPF package is used to solve an OCP with
the following formulation.

rrLllin v (xy) + ZE 'k (X )
ke
p: subject to xﬁﬂ =f[xIM,_ uIM,_ k)

x =A and

(1)

XN=B

The results obtained from solving the OCP P above is a control
sequence u;, defined along a finite time horizon (horizon length
of N+ 1,fromk=0to k=N).

In Eq. (1), we refer XIM as the signal x up-sampled by factor
of M using the zero order hold (ZOH) interpolation. Further,
X1 = flx, ug, k) describes the system's dynamics whereas the
stage cost and the terminal cost are described by g, and gy,
respectively. As for x;, and uy, these two variables represent the
state variables and the input variables, respectively. The initial
state is given by xp and the final state is given by xy. The state
variables, the input variables, and the time are bounded and
discretized. The discretized states are called the nodes and the
discretized time are called the stages.

Besides backward DP, the YADPF package is also equipped
with value iteration algorithm to solve an OCP that does not
explicitly have a predefined horizon length and terminal cost.
Such an OCP is formulated in Eq. (2).

N-1
min Nll[r_jczojrgk (X, Uy)
. M Mo tM
Q: subject to XII] =f(x, ,_uI k) (2)
Xp =A
k=0,1,...

D=y =1
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In Eq. (2), y is the discounting factor which reflects how the
future values are being valued. The smaller y» value contributes
to the faster convergence but less-accurate solutions.

2.1. Software architecture

Backward DP starts from the terminal stage and moves to
the initial stage. The algorithm visits all nodes in each step and
calculates the stage cost. Before calculating the stage cost, the
algorithm first calculates the system's dynamic one step forward.
This whole process is iterative and can be made faster.

To make the process above faster, in our implementation,
we first calculate the system’s dynamic one step forward for all
existing nodes. We visit all nodes and apply all inputs to the
system's dynamical model. We then keep the results in a lookup
table for later use during the stage cost calculation. With this
lookup table, we can avoid this repetitive computation of the
system's dynamics and avoid using a for-loop. As a result, we
now have a matrix operation instead of having a for-loop. Thus,
we can unleash the full potential of MATLAB's engine for matrix
computations.

However, the process of creating a look-up table can easily
consume all computation power, including memory space caus-
ing the whole system to be unresponsive. This issue is likely to
happen when working with a high-dimension system in a less-
powerful computation system. It is also interesting to notice that
this process might be pretty similar to bootstrapping process
in reinforcement learning. However, in reinforcement learning,
the bootstrapping process involves a more complex estimation
process [10].

Besides backward DP, in YADPF, we also implement value
iteration, which is in principal a variation of DP implementation.
Unlike backward DP, the iteration in value iteration is not stage-
based. The iteration terminates based on the convergence of some
calculated costs. Thus, value iteration is an infinite horizon DP.
More details on value iteration can be found in a popular textbook
by Bertsekas' [11].

With value iteration, we can build a control table (policy
matrix) such that a dynamical system optimally evolves from
any given initial state to a targeted terminal state. Compared to
backward DP, value iteration demands less memory and requires
no predefined horizon length. Therefore, it becomes a better
alternative for infinite horizon optimization problem.

2.2. Software functionalities

The implementation of DP requires a discretized simulation
environment. In this discretized environment, the states, inputs,
and time are all discretized. When using the YADPF package, users
are responsible for the discretization process.

In addition to the discretization process, users must create
three functions that look like the following.

function x_next = state_update_fn(X, U, dt) 1
% Describe the system dynamics here 2
end 3
4

function ] = stage_cost_fn(X, U, k, dt) 5
% Describe the stage cost function here [
end 7
8

function | = terminal_cost_fn(X) 9
% Desired terminal state cost function here 10
end 11

Listing 1: The structure of the state update, stage cost, and
terminal cost functions.
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In Listing 1, state_update_fn, stage_cost_fn, and ter-
minal _cost_fn are the state update function, stage cost func-
tion and the terminal cost function, respectively. The parameters:
¥, U, and dt represent state variables, input variables, and time
interval for the OCP, respectively. It is important to notice that the
function state_update_fn can only accept non-autonomous
dynamical system since there is no information on the current
stage available. However, in stage_cost_fn function, there is
parameter k, which is the number of the current stage and can
be used to handle time-weighted objective function.

In the next step, handles to the three previously mentioned
functions are then registered to a data structure (named as dpf).
We then send this data structure to the DP solver, as shown in
the Listing 2 below.

% Setup: 2 states and 1 input 1
P=-12 : 0001 : 0.5; 2
V= —-007 : 0.0001 : 0.07; 3
U=[-101]; 4

5
dpf.states = {P V}; [
dpf.inputs = {U}: 7
dpf.T_ocp =1; 8
dpf.T_dyn =1 9
dpf. n_horizon = 100; 10
dpf.state_update_fn = @state_update_fn; 11
dpf.stage_cost_fn = @stage_cost_fn; 12
dpf.terminal_cost_fn = @terminal_cost_fn; 13

14
% Create and run the solver 15
dpf = yadpf_solve(dpf): 16

17
% Trace, initial states: [—0.5 0] 18
dpf = yadpf_trace(dpf, [-05 0]); 19

20
% Plot the results 21
yadpf_plot(dpf, " '): 2

Listing 2: In backward DP, a structure is used to hold a
necessary information.

In Listing 2, line 9 to 16, we can see a simple data structure
dpf is being used to hold all information on the OCP. Next,
yadpf _solve function is called where the DP is implemented.
Notice that backward DP solves an OCP for all possible initial state
values (nodes). Thus, we have to trace the specific solution for
the initial state values that we are interested with. This process
is done with the yadpf_trace function. Finally, we can plot the
results by using yadpf_plot function.

As for value iteration, we must also discretize the OCP as in
backward DP. However, unlike in backward DP, value iteration re-
quires only two user-defined functions: the state update function,
and the stage cost function. The prototypes of these two functions
are identical with those in backward DP (see Listing 1). Horizon
length is no longer needed. Instead, a new variable is introduced
for setting the maximum number of iterations (see Listing 3, line
10).

% Setup: 2 states and 1 input 1
P=-12 : 0001 : 0.5; 2
V= —-007 : 0.0001 : 0.07; 3
U=[-101]; 4

5
dpf.states = {P V}; [
dpf.inputs = {U}: 7
dpf.T_ocp =1; 8
dpf.T_dyn =1 9
dpf. max_iter = 10000; 10
dpf.state_update_fn = @state_update_fn; 11
dpf.stage_cost_fn = @stage_cost_fn; 12

13
% Create and run the solver 14
dpf = yadpf_visolve{dpf, 0.99); 15

16
% Trace, initial states: [—0.5 0] 17
dpf = yadpf_vitrace{dpf, [—-05 0]); 18

19
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% Plot the results 20
yvadpf_plot{dpf, " '): 21

Listing 3: MATLAB code for value iteration in the YADPF is very
similar to backward DP.

Value iteration is executed in line 19 of Listing 2. Here, we
selected ¥ = 0.9. Like backward DP, value iteration solves an
OCP for all possible initial state values (nodes). Thus, we have
to trace the specific solution for the initial state values that we
are interested in by using the yadpf_vitrace function. Finally,
plotting the results can be done by using the same plotting
function as in backward DP: yadpf_plot.

3. llustrative examples

In this section, we present two sets of complete working codes
to demonstrate the functionalities of the YADPF package: the
mass—-damper's time-optimal control problem and the Sutton's
mountain car problem. In both problems, we use the YADPF
package to plan for time-optimal motions to reach the given
targets.

Besides these two problems, the YADPF package includes sev-
eral more academic-oriented examples, such as the stabilization
of an F8 aircraft [12-14], Dubin's car [15,16], hanging piece-
wise mass-spring system [17], Lotka-Volterra fishery [5,18], a
stirred-tank mixer [ 19], and finding the shortest path on a terrain.

3.1. The mass-damper’s optimal control problem

Assume that we have a mass (m = 1 [kilogram]) and a damper
(b = 0.1 [Newtonxsecond/meter]) with two state variables
(position x; [meter] and velocity v, [meter/second]), and one
input variable (external force f;, [Newton]). The applied force that
can be applies ranges from —4 Newtons to 4 Newtons. Our goal
is to move the mass from x = 0 to x = 0.5 as fast as possible but
with minimal input (energy). When the mass arrives at the target
position, its speed should be as close as possible to zero.

Based on the statements above, we can formulate the OCP as
follows.

N1

min o 2+“X—x2+a,__,2
fiexy.vy 1§fk 2(}' N) 3(11- ]_N)

subject to :

Xpt1 _ 1 At X 0
[L‘kll]_[o 1_%4f][1’k]+[mim]fk )

fi=F €{—4,—-39,—-338,...,3.8 39,4}
X, = X, € {0,0.001,0.002, ..., 1}
v, =V, € {0, 0.001, 0.002, ..., 1}
Xf = 0.5
vy =0
In Eq. (3). w1, w2, and «3 are the control gains for the force
input, the position and the velocity, respectively, whose values
are tuned heuristically. Let us set the sampling period for the
OCP to 0.1 s and for the dynamic simulation to 0.01 s. Listing 4

contains MATLAB implementation of the OCP in Eq. (3) by using
the YADPF package.

t Setup the states and the inputs 1
X= 0 :0001 : 1; % Position 2
V= 0:0001:1; locity 3
F=-4:0.1 : 4; % Applied force 4

5
% Setup the horizon [
TF = 1; 7
T_ocp = 0.1; 8
t =0 : T_ocp : Tf; 9
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Fig. 1. Time-optimal motion of a mass-damper system, computed by backward
DF.

dpf.states = {X. v}; 10
dpf.inputs = {F}: 1
dpf.T_ocp = T_ocp: 12
dpf.T_dyn = 0.01; 13
dpf. n_horizon = length{t); 14
dpf.state_update_fn = @state_update_fn; 15
dpf.stage_cost_fn = @stage_cost_fn; 16
dpf.terminal_cost_fn = @terminal_cost_fn; 17
18
% Run, trace, and plot 19
% Initial states: [0 0] 20
dpf = yadpf_solve(dpf): 21
dpf = yadpf_trace({dpf, [0 0]):
yvadpf_plot(dpf, " ');

% Optional: draw the reachability plot
vadpf_rplot(dpf, [0.5 0], 0.1):

%% The state unpdate funtion

unction X = state_update_fn(X, F, dt)
= 1; * Mass

= 0.1; % Damping coefficient

o g

X{1} = X{1} + dtaX{2}:
X{2} = X{2} — b/medt.«X{2} + dt/mxF{1};

% The stage cost function

function ] = stage_cost_fn(X, F, k, dt)
] = dtxF{1}.%2;

end

%% The terminal cost function
function ] = terminal_cost_fn(X)
xf = [0.5 0]:

% Control gains
alphal = 1000;
alpha2 = 100;

CEEASGEO BB EYEHEHME SEEYEEEREN

1 = alphal#(X{1}—xf(1))."2 + ...
alpha2#(X{2}—xf(2)).°2; 51
end 52

Listing 4: Time-optimal motion of a mass-damper system with
backward DP.

We first guess the horizon length in Listing 4, lines 7 to 9 since
it is not known yet. In a typical time-optimal control problem, we
can avoid guessing by using value iteration. Value iteration and
backward DP on the problem described in Eq. (3) give us very
similar results, as shown in Fig. 1. While backward DP generates
a reachability plot (see Fig. 2), value iteration generates a policy
matrix that can also be presented as a plot (see Fig. 3).
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Terminal states

Stage-k

Fig. 2. Reachability plot by backward DP for the time-optimal motion of the
mass—-damper system.

Initial states— 4

4. 2
2 - 1
= 0- 0
2 K
4 -2
o
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4

Fig. 3. Policy matrix generated by value iteration for the time-optimal motion
of the mass-damper system.

Importantly, we would like to point out that the present
OCP is not a solid time-optimal control problem. Implementing
a time-optimal control problem in DP is not a straightforward
process. The applied objective function here minimizes the sum
of squared errors along a predefined time horizon. However,
switching actions appear for the input sequence by applying very
high control gains. Bang-bang action typically appears in a time-
optimal control problem. Nevertheless, this argument requires
further validation.

3.2. Sutton's mountain car problem

The mountain car problem is a widespread problem that was
initially proposed by Moore in [20] and popularized by Sutton and
Barto in their textbook [21]. Since then, it has become a common
toy problem for reinforcement learning algorithm testings with
many variations. The problem that we use in this paper is similar
to the problem found in [21]. Reformulating Sutton's mountain
car problem as an infinite-horizon OCP with a discount factor of




Auralius Manurung, Lisa Kristiana and Nur Uddin

.0——\_/L—

aait)

01 L L L L L L |
4]

it
o
T

A L L L L L L |
o 20 40 60 &0 100 120 140
t

Fig. 4. The optimal solution on Sutton's mountain car problem, computed by
backward DP.

y gives us Eq. (4).
min y {m (xy — 0.5)% + urzicN}
g

subject to:
X1 = Xp + Xpp
X g — X + 0.001u; — 0.0025 cos (3x1)
X € Xy = {—1.2,-1.199, ...,0.5}
i € X, = {—0.07, —0.0060, ..., 0.07}
u € Uy ={-1.0,1}
k=0,1,...

As can bee seen from Eq. (4), y is the discount factor which
is set to 0.99. The car has two state variables: the car's position
(xx) and velocity (vy); and one input variable: the car's engine
throttle (uy). Two control gains are introduced, ¢y and &3, in order
to regulate the car's position and wvelocity, respectively. These
control gains are tuned heuristically. Listing 5 contains MATLAB

implementation of the OCP in Eq. (4) by using the YADPF package.
The results are presented in Figs. 4 and 5.

(4)

Setup the states and the inputs 1
P=-12 : 0001 : 0.5; 2
V= —-007 : 0.0001 : 0.07; 3
U=[-101]; 4

5
dpf.states = {P V}; [
dpf.inputs = {U}: 7
dpf.T_ocp =1; 8

SoftwareX 17 (2022) 101001

dpf.T_dyn =1; 9
dpf.max_iter = 1500; 10
dpf.state_update_fn = @state_update_fn; 11
dpf.stage_cost_fn = @stage_cost_fn; 12

13
% Run and trace 14
% From [—0.5 0] to [0.5 0] 15
dpf = yadpf_visolve (dpf, 0.99); 16
dpf = yadpf_vitrace (dpf, [—0.5 0], [0.5 0]); 17
yvadpf_plot{dpf, " '): 18

19
% Policy plot 20
yadpf_pplot{dpf) 21

22
%% The state update function 23
function X = state_update_fn(X, U, ~) 24
K2} = X{2} + 0.001+U{1} — 0.0025%cos(3I+X[1}); 25
X1} = X{1} + X{2}; 26

27
¢ Hitting the left wall 28
[r.c] = find (X{1}{:.:) <= —12); 29
X{2}(r.c) = 0.001; & Inelastic wall 30

31
% Hitting the right wall 32
[r,c] = find (X{1}({:.:) »= 0.5); 33
X{2}r.c) = 0; = Stop! 34
end 35

36
%% The stage cost function 37
function ] = stage_cost_fn(X, U, k, =) 38
alphal = 1000; 30
alpha? = 1000; 40

41
] = alphal#(X{1}-0.5).*2 + alpha2sX{2}.72; 42
end 43

Listing 5: Sutton's mountain car with value iteration.

4. Impact

DP provides golden standards in dynamic optimization due to
the exactness of the solution that it provides. The sub-optimality
of the solutions is caused by the limitations introduced during
the discretization process. However, DP requires a large memory
capacity, making it unsuitable for complex systems.

Therefore, our DP implementation is oriented towards the aca-
demic environment: for learning, teaching, and research. We also
add extra capabilities to generate two technical plots: reachability
and policy-matrix plots. These plots can be generated for low
dimension systems with one and two state variables. Moreover,
with value iteration implemented in addition to backward DP, the
YADPF package can address both finite and infinite horizon OCPs.

We are currently using the YADPF package for theoretical
research in optimal controls. We have more flexibility in imple-
menting time-optimal control for nonlinear systems thanks to
separate sampling periods for the OCP and the dynamic sim-
ulation. The selection of OCP's sampling period may affect the

12 i
008 006 004 002 0 002 004 005 008

Fig. 5. Left figure shows the very complicated reachability plot with many unconnected regions generated by backward DP. The right figure shows the policy matrix
generated by value iteration. Very similar optimal state trajectories are observed with the two methods.
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switching actions that typically appear in a time-optimal control
problem.

The YADPF source code had been made public to the MATLAB
community, along with detailed documentation on how to use it.
Thus, we are sure that the YADPF package can benefit researchers
in dynamic programming and optimization, especially those with
relatively weak backgrounds in optimal control theory.

5. Conclusion

This paper promotes dynamic programming in general and
specifically the YADPF package for a generic dynamic program-
ming implementation in MATLAB. The introduced YADPF package
enables students and researchers to solve dynamic optimization
problems with finite and infinite horizons. In this paper, we have
also shown that it is relatively easy to use the YADPF package.
Therefore, it can become an efficient tool for research, learning,
and teaching in the area of dynamic optimization as well as in
reinforcement learning.

In the near future, we plan to use the YADPF package for
teaching advanced elective courses at the university while con-
tinuously adding more solved problems in the documentation
as examples. We expect to expose the YADPF package to many
different use scenarios. Further, we already have several devel-
opment ideas for the YADPF package for our long-term plan. The
first is to implement a selected variation of ADP and the second
is to implement a stochastic DP.
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