2022 IEEE World AI IoT Congress (AIIoT 2022)

Seattle, Washington, USA 6 – 9 June 2022

IEEE Catalog Number: CFP22AJ4-POD **ISBN:**

978-1-6654-8454-1

Copyright © 2022 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved

Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

*** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version.

IEEE Catalog Number:	CFP22AJ4-POD
ISBN (Print-On-Demand):	978-1-6654-8454-1
ISBN (Online):	978-1-6654-8453-4

Additional Copies of This Publication Are Available From:

Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: curran@proceedings.com Web: www.proceedings.com

Content

Sr. No.	Paper ID	Paper Title				
	SESSION	1: ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING				
01.1	1570795356	Machine Learning-Based System for Monitoring Social Distancing and Mask Wearing	001			
01.2	1570808820	Feature Fusion Network Based on Hybrid Attention for Semantic Segmentation	009			
01.3	1570805962	Leveraging Transfer Learning and GAN Models for OCR From Engineering Documents	015			
01.4	1570806027	Real Time FPGA-Based CNN Training and Recognition of Signals	022			
01.5	1570806267	A Review on Suicidal Ideation Detection Based on Machine Learning and Deep Learning Techniques	027			
01.6	1570809501	Ensemble Reinforcement Learning Framework for Sum Rate Optimization in NOMA-UAV Network	032			
	SES	SION 2: COMPUTATIONAL INTELLIGENCE, BIG DATA				
02.1	1570805872	Clustering and Classification Models for Student's Grit Detection in E- Learning	039			
02.2	1570806571	To Offload or Not? An Analysis of Big Data Offloading Strategies From Edge to Cloud	046			
02.3	1570806357	Data Quality Management Improvement: Case Studi PT BPI	053			
02.4	1570802864	Analysis of the Financial Efficiency of Companies in the Industrial Sector During COVID-19: Case Study in Peru	059			
02.5	1570805378	Using Timer Data to Conjunct Self-Reported Measures in Quantifying Deception	065			
	SESSION	3: ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING				
03.1	1570809292	Genetics Algorithm for Logistic-Route Optimization in Urban Area	071			
03.2	1570805834	Towards A Lightweight Identity Management and Secure Authentication for IoT Using Blockchain	077			
03.3	1570799588	MVE-Based Reinforcement Learning Framework WithExplainability for Improving Quality of Experience of Application Placement in Fog Computing	084			
03.4	1570808170	A Face Recognition Method Using Deep Learning to Identify Mask and Unmask Objects	091			

03.61570806526Neighbor-Based Optimized Logistic Regression Machine Learning Model for Electric Vehicle Occupancy Detection106SESSION 4: ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING04.11570799361A Deep Learning Approach for Automatic Scoliosis Cobb Angle Identification11104.21570802911Power and Telecommunication Lines Detection and Avoidance for Drones11804.31570797602Major Threats to the Continued Adoption of Artificial Intelligence in Today's Hyperconnected World12404.4157080257Disrupting the Cooperative Nature of Intelligent Transportation Systems13104.51570810540An Evaluation and Embedded Hardware Implementation of YOLOv5 for Real-Time Wildfire Detection13804.6157080077An Approach for Automatic Discovery of Rules Based on ECG Data Using Learning Classifier Systems15505.11570800977Fake News Detection in Social Networks Using Data Mining Techniques16105.31570800425Computer Vision Method in Means of Egress Obstruction Detection Direction of Arrival Estimation17905.51570808130Shift-Invariant Structure-Imposed Convolutional Neural Language Processing17406.11570809219Heart Failure Survival Prediction Using Machine Learning Algorithm: And a Systematic Review Analysis18706.21570809219Heart Failure Survival Prediction Using Machine Learning Algorithm: And a Systematic Review Analysis19406.31570809219Heart Failure Survival Prediction Using Machine Learning Algorithm: Adversa	03.5	1570799586	Man-In-The-Middle Attack Explainer for Fog Computing Using Soft Actor Critic Q-Learning Approach				
SESSION 4: ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING04.11570799361A Deep Learning Approach for Automatic Scoliosis Cobb Angle Identification11104.21570802911Power and Telecommunication Lines Detection and Avoidance for Drones11804.31570797602Major Threats to the Continued Adoption of Artificial Intelligence in Today's Hyperconnected World12404.41570802257Disrupting the Cooperative Nature of Intelligent Transportation 	03.6	1570806526	Neighbor-Based Optimized Logistic Regression Machine Learning Model for Electric Vehicle Occupancy Detection	106			
04.11570799361A Deep Learning Approach for Automatic Scoliosis Cobb Angle Identification11104.21570802911Power and Telecommunication Lines Detection and Avoidance for Drones11804.31570797602Major Threats to the Continued Adoption of Artificial Intelligence in Today's Hyperconnected World12404.41570802257Disrupting the Cooperative Nature of Intelligent Transportation 		SESSION	4: ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING				
04.21570802911Power and Telecommunication Lines Detection and Avoidance for Drones11804.31570802257Major Threats to the Continued Adoption of Artificial Intelligence in Today's Hyperconnected World12404.41570802257Disrupting the Cooperative Nature of Intelligent Transportation Systems13104.51570810540An Evaluation and Embedded Hardware Implementation of YOLOv5 for Real-Time Wildfire Detection13804.61570806717An Approach for Automatic Discovery of Rules Based on ECG Data Using Learning Classifier Systems145SESSION S: BIG DATA, COMPUTER VISION, NEURAL NETWORKS05.11570809097Fake News Detection in Social Networks Using Data Mining Techniques15505.21570802435No-Clear for Nuclear16105.3157080610Cyber Security Vulnerability Detection Using Natural Language Processing17405.51570808130Shift-Invariant Structure-Imposed Convolutional Neural Networks for Direction of Arrival Estimation18706.11570809219Lung Cancer Prediction Model Using Ensemble Learning Techniques and a Systematic Review Analysis18706.21570809219Heart Failure Survival Prediction Using Machine Learning Algorithm: Am I Safe From Heart Failure?20106.31570806211Ship Deck Segmentation in Engineering Document Using Generative Adversarial Networks20706.51570806219Implementation of Machine Learning in BCI Based Lie Detection213	04.1	1570799361	A Deep Learning Approach for Automatic Scoliosis Cobb Angle Identification	111			
04.31570797602Major Threats to the Continued Adoption of Artificial Intelligence in Today's Hyperconnected World12404.41570802257Disrupting the Cooperative Nature of Intelligent Transportation Systems13104.51570810540An Evaluation and Embedded Hardware Implementation of YOLOV5 for Real-Time Wildfire Detection13804.61570806717An Approach for Automatic Discovery of Rules Based on ECG Data 	04.2	1570802911	Power and Telecommunication Lines Detection and Avoidance for Drones	118			
04.41570802257Disrupting the Cooperative Nature of Intelligent Transportation Systems13104.51570810540An Evaluation and Embedded Hardware Implementation of YOLOV5 for Real-Time Wildfire Detection13804.61570806717An Approach for Automatic Discovery of Rules Based on ECG Data Using Learning Classifier Systems145SESSION 5: BIG DATA, COMPUTER VISION, NEURAL NETWORKS05.11570809097Fake News Detection in Social Networks Using Data Mining 	04.3	1570797602	Major Threats to the Continued Adoption of Artificial Intelligence in Today's Hyperconnected World	124			
04.51570810540An Evaluation and Embedded Hardware Implementation of YOLOV5 for Real-Time Wildfire Detection13804.61570806717An Approach for Automatic Discovery of Rules Based on ECG Data Using Learning Classifier Systems145SESSION 5: BIG DATA, COMPUTER VISION, NEURAL NETWORKS05.11570800907Fake News Detection in Social Networks Using Data Mining Techniques15505.21570802435No-Clear for Nuclear16105.31570806425Computer Vision Method in Means of Egress Obstruction Detection Processing16705.41570806010Cyber Security Vulnerability Detection Using Natural Language Processing17405.51570808130Shift-Invariant Structure-Imposed Convolutional Neural Networks for Direction of Arrival Estimation18706.11570809219Lung Cancer Prediction Model Using Ensemble Learning Techniques and a Systematic Review Analysis18706.31570809219Heart Failure Survival Prediction Using Machine Learning Algorithm: Am I Safe From Heart Failure?19406.31570806211Ship Deck Segmentation in Engineering Document Using Generative Adversarial Networks20106.51570806219Implementation of Machine Learning in BCI Based Lie Detection213	04.4	1570802257	Disrupting the Cooperative Nature of Intelligent Transportation Systems	131			
04.61570806717An Approach for Automatic Discovery of Rules Based on ECG Data Using Learning Classifier Systems145SESSION 5: BIG DATA, COMPUTER VISION, NEURAL NETWORKS05.11570809097Fake News Detection in Social Networks Using Data Mining Techniques15505.21570802435No-Clear for Nuclear16105.31570806425Computer Vision Method in Means of Egress Obstruction Detection Processing16705.4157080610Cyber Security Vulnerability Detection Using Natural Language Processing17405.51570808130Shift-Invariant Structure-Imposed Convolutional Neural Networks for Direction of Arrival Estimation179SESSION 6: ARTIFICIAL INTELLIGENCE AND MACHIINE LEARNING06.11570806491Lung Cancer Prediction Model Using Ensemble Learning Techniques and a Systematic Review Analysis18706.21570809219Heart Failure Survival Prediction Using Machine Learning Algorithm: Am I Safe From Heart Failure?19406.31570806211Ship Deck Segmentation in Engineering Document Using Generative Adversarial Networks20706.51570806219Implementation of Machine Learning in BCI Based Lie Detection213	04.5	1570810540	An Evaluation and Embedded Hardware Implementation of YOLOv5 for Real-Time Wildfire Detection	138			
SESSION 5: BIG DATA, COMPUTER VISION, NEURAL NETWORKS05.11570809097Fake News Detection in Social Networks Using Data Mining Techniques15505.21570802435No-Clear for Nuclear16105.31570806425Computer Vision Method in Means of Egress Obstruction Detection Processing16705.41570806010Cyber Security Vulnerability Detection Using Natural Language Processing17405.51570808130Shift-Invariant Structure-Imposed Convolutional Neural Networks for Direction of Arrival Estimation179SESSION 6: ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING06.11570806491Lung Cancer Prediction Model Using Ensemble Learning Techniques and a Systematic Review Analysis18706.21570809219Heart Failure Survival Prediction Using Machine Learning Algorithm: Am I Safe From Heart Failure?19406.31570806211Ship Deck Segmentation in Engineering Document Using Generative Adversarial Networks20706.51570806219Implementation of Machine Learning in BCI Based Lie Detection213	04.6	1570806717	An Approach for Automatic Discovery of Rules Based on ECG Data Using Learning Classifier Systems	145			
05.11570809097Fake News Detection in Social Networks Using Data Mining Techniques15505.21570802435No-Clear for Nuclear16105.31570806425Computer Vision Method in Means of Egress Obstruction Detection Processing16705.41570806010Cyber Security Vulnerability Detection Using Natural Language Processing17405.51570808130Shift-Invariant Structure-Imposed Convolutional Neural Networks for 	1	SESSION	N 5: BIG DATA, COMPUTER VISION, NEURAL NETWORKS				
05.21570802435No-Clear for Nuclear16105.31570806425Computer Vision Method in Means of Egress Obstruction Detection16705.41570806010Cyber Security Vulnerability Detection Using Natural Language Processing17405.51570808130Shift-Invariant Structure-Imposed Convolutional Neural Networks for Direction of Arrival Estimation179SESSION 6: ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING06.11570806491Lung Cancer Prediction Model Using Ensemble Learning Techniques and a Systematic Review Analysis18706.21570809219Heart Failure Survival Prediction Using Machine Learning Algorithm: Am I Safe From Heart Failure?19406.31570806211Ship Deck Segmentation in Engineering Document Using Generative Adversarial Networks20106.51570806219Implementation of Machine Learning in BCI Based Lie Detection213	05.1	1570809097	Fake News Detection in Social Networks Using Data Mining Techniques	155			
05.31570806425Computer Vision Method in Means of Egress Obstruction Detection16705.41570806010Cyber Security Vulnerability Detection Using Natural Language Processing17405.51570808130Shift-Invariant Structure-Imposed Convolutional Neural Networks for Direction of Arrival Estimation179SESSION 6: ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING06.11570806491Lung Cancer Prediction Model Using Ensemble Learning Techniques and a Systematic Review Analysis18706.21570809219Heart Failure Survival Prediction Using Machine Learning Algorithm: 	05.2	1570802435	No-Clear for Nuclear	161			
05.41570806010Cyber Security Vulnerability Detection Using Natural Language Processing17405.51570808130Shift-Invariant Structure-Imposed Convolutional Neural Networks for Direction of Arrival Estimation179SESSION 6: ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING06.11570806491Lung Cancer Prediction Model Using Ensemble Learning Techniques and a Systematic Review Analysis18706.21570809219Heart Failure Survival Prediction Using Machine Learning Algorithm: Am I Safe From Heart Failure?19406.31570809070Classifcation of COVID-19 in Chest X-Ray Images Using Fusion of Deep Features and LightGBM20106.41570806211Ship Deck Segmentation in Engineering Document Using Generative Adversarial Networks20706.51570806219Implementation of Machine Learning in BCI Based Lie Detection213	05.3	1570806425	Computer Vision Method in Means of Egress Obstruction Detection	167			
05.51570808130Shift-Invariant Structure-Imposed Convolutional Neural Networks for Direction of Arrival Estimation179SESSION 6: ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING06.11570806491Lung Cancer Prediction Model Using Ensemble Learning Techniques and a Systematic Review Analysis18706.21570809219Heart Failure Survival Prediction Using Machine Learning Algorithm: Am I Safe From Heart Failure?19406.31570809070Classifcation of COVID-19 in Chest X-Ray Images Using Fusion of Deep Features and LightGBM20106.41570806211Ship Deck Segmentation in Engineering Document Using Generative Adversarial Networks20706.51570806219Implementation of Machine Learning in BCI Based Lie Detection213	05.4	1570806010	Cyber Security Vulnerability Detection Using Natural Language Processing	174			
SESSION 6: ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING06.11570806491Lung Cancer Prediction Model Using Ensemble Learning Techniques and a Systematic Review Analysis18706.21570809219Heart Failure Survival Prediction Using Machine Learning Algorithm: Am I Safe From Heart Failure?19406.31570809070Classifcation of COVID-19 in Chest X-Ray Images Using Fusion of Deep Features and LightGBM20106.41570806211Ship Deck Segmentation in Engineering Document Using Generative 	05.5	1570808130	Shift-Invariant Structure-Imposed Convolutional Neural Networks for Direction of Arrival Estimation	179			
06.11570806491Lung Cancer Prediction Model Using Ensemble Learning Techniques and a Systematic Review Analysis18706.21570809219Heart Failure Survival Prediction Using Machine Learning Algorithm: Am I Safe From Heart Failure?19406.31570809070Classifcation of COVID-19 in Chest X-Ray Images Using Fusion of Deep Features and LightGBM20106.41570806211Ship Deck Segmentation in Engineering Document Using Generative Adversarial Networks20706.51570806219Implementation of Machine Learning in BCI Based Lie Detection213	0	SESSION	6: ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING				
06.21570809219Heart Failure Survival Prediction Using Machine Learning Algorithm: Am I Safe From Heart Failure?19406.31570809070Classifcation of COVID-19 in Chest X-Ray Images Using Fusion of Deep Features and LightGBM20106.41570806211Ship Deck Segmentation in Engineering Document Using Generative Adversarial Networks20706.51570806219Implementation of Machine Learning in BCI Based Lie Detection213	06.1	1570806491	Lung Cancer Prediction Model Using Ensemble Learning Techniques and a Systematic Review Analysis	187			
06.31570809070Classification of COVID-19 in Chest X-Ray Images Using Fusion of Deep Features and LightGBM20106.41570806211Ship Deck Segmentation in Engineering Document Using Generative Adversarial Networks20706.51570806219Implementation of Machine Learning in BCI Based Lie Detection213	06.2	1570809219	Heart Failure Survival Prediction Using Machine Learning Algorithm: Am I Safe From Heart Failure?	194			
06.41570806211Ship Deck Segmentation in Engineering Document Using Generative Adversarial Networks20706.51570806219Implementation of Machine Learning in BCI Based Lie Detection 213213	06.3	1570809070	Classifcation of COVID-19 in Chest X-Ray Images Using Fusion of Deep Features and LightGBM	201			
06.5 1570806219 Implementation of Machine Learning in BCI Based Lie Detection 213	06.4	1570806211	Ship Deck Segmentation in Engineering Document Using Generative Adversarial Networks	207			
	06.5	1570806219	Implementation of Machine Learning in BCI Based Lie Detection	213			

	SESSION	7: ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING					
07.1	1570805971 Deep Learning Techniques for Joint Named Entities and Relation Extraction						
07.2	1570809119	Deep Learning Models for Water Potability Classification in Rural Areas in the Philippines	225				
07.3	1570805137	Deep Learning Autoencoder Based Anomaly Detection Model on 4G Network Performance Data	232				
07.4	1570805773	ML 360: Machine Learning Model Evaluation for 360 Degree Video Caching	238				
07.5	1570806767	Detection of Faults in Electro-Hydrostatic Actuators Using Feature Extraction Methods and an Artificial Neural Network	245				
07.6	1570806697	Classification of "Like" and "Dislike" Decisions From EEG and fNIRS Signals Using a LSTM Based Deep Learning Network	252				
SES	SION 8: PAR	ALLEL PROCESSING, CLOUD COMPUTING, COMPUTER GRA	PHICS				
08.1	1570806376	Practical Applications of Edge Computing to Accelerate Cloud Hosted Web Content	256				
08.2	1570808460	Cloud Computing Security and Future	264				
08.3	1570809474	Honeynets and Cloud Security	270				
08.4	1570806139	Using Amazon Managed Blockchain for ePHI: An Analysis of Hyperledger Fabric and Ethereum	276				
08.5	1570806718	Evaluation of Naïve Bayesian Algorithms for Cyber-Attacks Detection in Wireless Sensor Networks	283				

	SESSION	9: ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING	
09.1	1570806453	Automatic Sentence Segmentation in European Portuguese Speech: Spectrogram Identification Through Windowing	290
09.2	1570806859	COVID-19 Prediction Based on Infected Cases and Deaths of Bangladesh Using Deep Transfer Learning	296
09.3	1570807082	Detecting Amazon Bot Reviewers Using Unsupervised and Supervised Learning	303
09.4	1570806213	Pulse and Signal Data Classification Using Conventional and Few- Shot Machine Learning	311
09.5	1570806695	EEG and fNIRS Analysis Using Machine Learning to Determine Stress Levels	318
09.6	1570806426	Develop a Mobile Application Prototype for Occupant Centric in Facility Maintenance Management	323

	SESSION 1	10: ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING	
10.1	1570806512	Predicting Cryptocurrency Price Change Direction From Supply-Side Factors via Machine Learning Methods	330
10.2	1570806997	Comparative Analysis of AlexNet, Resnet-50, and Inception-V3 Models on Masked Face Recognition	337
10.3	1570806720	Real-Time Dynamic Object Grasping With a Robotic Arm: A Design for Visually Impaired Persons	344
10.4	1570805011	Covid-EnsembleNet: An Ensemble Based Approach for Detecting Covid-19 by Utilising Chest X-Ray Images	351
10.5	1570805820	Toward Detecting Cyberattacks Targeting Modern Power Grids: A Deep Learning Framework	357
10.6	1570805591	A Review of Human Immune Inspired Algorithms for Intrusion Detection Systems	364
SES	SION 11: CO	MPUTER GRAPHICS, CRYPTOGRAPHY, PARALLEL ALGORI	THMS
11.1	1570805744	Simulating the Behaviour and Displacement of Women in Water- Stressed Areas	372
11.2	1570810543	Red Toad, Blue Toad, Hacked Toad?	379
11.3	1570805178	Comperative Study of Sha-256 Optimization Techniques	387
11.4	1570806705	A Distributed Average Cost Reinforcement Learning Approach for Power Control in Wireless 5G Networks	393
11.5	1570806129	A Review on Energy Efficient Strategies for Corona Based Architecture in Wireless Sensor Networks	400
11.6	1570806698	Performance Evaluation of a New One-Time Password (OTP) Scheme Using Stochastic Petri Net (SPN)	407
0	SESSION 1	2: ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING	
12.1	1570805279	Wearable Sensing and Physical Exercise Recognition	413
12.2	1570806158	An Outcome Based Analysis on Heart Disease Prediction Using Machine Learning Algorithms and Data Mining Approaches	418
12.3	1570809492	MusCare+: Muscle Monitoring for Anomalies	425
12.4	1570806701	Comparing Pretrained Image-Net CNN With a Siamese Architecture for Few-Shot Learning Applications in Radar Systems	431
12.5	1570806124	Day Ahead Power Demand Forecasting for Hybrid Power at the Edge	437
12.6	1570805411	Classification of Various Workout Motions Using Wearable Sensors	442

	SESSION 1	3: ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING	
13.1	1570806702	Graph Attention Neural Network Distributed Model Training	447
13.2	1570806429	Using Machine Learning and Regression Analysis to Classify and Predict Danger Levels in Burning Sites	453
13.3	1570804995	Comparative Analysis of ARIMA and LSTM Machine Learning Algorithm for Stock Price Prediction	460
13.4	1570806721	Predicting Audio Training Learning Outcomes Using EEG Data and KNN Modeling	466
13.5	1570805743	Electronic Device for Acquiring Images of Sardine Cans	471
13.6	1570799159	Extraction of Step Performed in Use Case Description as a Reference for Conformity of Sequence Diagrams Using Text Mining (Case Study: SRS APTU)	476
		SESSION 14: ROBOTICS, SECURITY	
14.1	1570806144	Comparison of Task Performance and User Satisfaction Between Holographic and Standard QWERTY Keyboard	483
14.2	1570806297	Salted Egg Cleaning and Grading System Using Machine Vision	489
14.3	1570809455	Ensuring Web Integrity Through Content Delivery Networks	494
14.4	1570802023	A Study on Brute Force Attack on T-Mobile Leading to SIM-Hijacking and Identity-Theft	501
14.5	1570798635	Survey on Types of Cyber Attacks on Operating System Vulnerabilities Since 2018 Onwards	508
14.6	1570806574	Proof-Of-Concept for a Granular Incident Management Information Sharing Scheme	515
	SESSION 1	5: ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING	
15.1	1570799584	Energy Efficient Double Critic Deep Deterministic Policy Gradient Framework for Fog Computing	521
15.2	1570802500	Fake Product Review Detection Using Machine Learning	527
15.3	1570809088	Profit Prediction Based on Financial Statements Using Deep Neural Network	533
15.4	1570809356	CNN-Based Hyperparameter Optimization Approach for Road Pothole and Crack Detection Systems	538
15.5	1570806690	Violence Detection Using Computer Vision Approaches	544
	SESSION 1	6: ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING	
16.1	1570806666	Low-Cost Ensembling for Deep Neural Network Based Non-Intrusive Load Monitoring	551

16.2	1570806595	Research and Development of an E-Commerce With Sales Chatbot				
16.3	1570806657	Development of Cloud-Based Infrastructure for Real Time Analysis of Wearable Sensor Signal	565			
16.4	1570806659	HomeIO: Offline Smart Home Automation System With Automatic Speech Recognition and Household Power Usage Tracking	571			
		SESSION 17: SECURITY				
17.1	1570808648	A Survey of Intrusion Detection and Prevention Systems	578			
17.2	1570809463	Botnets as the Modern Attack Vector	585			
17.3	1570809513	A Taxonomy of Privacy, Trust, and Security Breach Incidents of Internet-Of-Things Linked to F(M).A.A.N.G. Corporations	591			
17.4	1570805408	PPIoV: A Privacy Preserving-Based Framework for IoV-Fog Environment Using Federated Learning and Blockchain	597			
17.5	1570806685	Employing Edge Computing to Enhance Self-Defense Capabilities of IoT Devices	604			
17.6	1570802813	A Robust Information Hiding Scheme Using Third Decomposition Layer of Wavelet Against Universal Attacks	611			
	SESSION 1	8: ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING, COMPUTATIONAL INTELLIGENCE				
18.1	1570806613	Automated Determination of Mushroom Edibility Using an Augmented Dataset	617			
18.2	1570804213	Facial Detection in Low Light Environments Using OpenCV	624			
18.3	1570810541	ADMSV - A Differential Machine Learning Based Steering Controller for Smart Vehicles	629			
18.4	1570806714	Optical Features for Automated Determination of Agricultural Product Varieties	635			
18.5	1570806568	Pattern Recognition Method for Detecting Engineering Errors on Technical Drawings	642			
18.6	1570805997	A Hybrid Firefly-DE Algorithm for Ridesharing Systems With Cost Savings Allocation Schemes	649			
18.7	1570806022	Classification of Movie Success: A Comparison of Two Movie Datasets	654			
	SESSION	19: SECURITY, SYSTEMS AND SOFTWARE ENGINEERING				
19.1	1570798629	Analysis of Various Vulnerabilities in the Raspbian Operating System and Solutions	659			
19.2	1570796903	Text Data Processing in Requirement Specifications as a Reference for Similarities Between Use Case Diagrams and Use Case Descriptions for Smart Sleeping Lamp Application Documents	665			
19.3	1570805564	Measurement of Similarity Between Requirement Elicitation and Requirement Specification Using Text Pre-Processing in the CINEMALOKA Application	672			

19.4	1570805565	Implementation of Semantic Textual Similarity Between Requirement Specification and Use Case Description Using WUP Method (Case Study: Sipjabs Application)					
19.5	1570809384	Mental Health Stigma and Natural Language Processing: Two Enigmas Through the Lens of a Limited Corpus	688				
S	ESSION 20: U	JBIQUITOUS COMPUTING, IOT PROTOCOLS,SECURITY FOR	ІоТ				
20.1	1570806671	Automated Medicinal-Pill Dispenser With Cellular and Wi-Fi IoT Integration	692				
20.2	1570802428	An Auditing Framework for Analyzing Fairness of Spatial-Temporal Applications of Federated Learning	699				
20.3	1570801686	Analysis of the Primary Attacks on IoMT Internet of Medical Things Communications Protocols	708				
20.4	1570805830	Development of Low Cost Smart Cane With GPS	715				
20.5	1570803439	An Evaluation of IoT DDoS Cryptojacking Malware and Mirai Botnet	725				
	SE	SSION 21: SECURITY FOR IoT, IoT ARCHITECTURES					
21.1	1570804560	Factors Impacting Resilience of Internet of Things Systems in Critical Infrastructure	730				
21.2	1570806686	NFDLM: A Lightweight Network Flow Based Deep Learning Model for DDoS Attack Detection in IoT Domains	736				
21.3	1570809400	Bit Switching Decoding of Cyclic Hamming Codes for IoT Applications	743				
21.4	1570806234	Applying Aspect-Oriented Design Methodology to Manage Time- Validity of Information in Internet-Of-Things Systems	749				
21.5	1570806696	LBDMIDS: LSTM Based Deep Learning Model for Intrusion Detection in IoT Networks	753				
	SES	SION 22: IoT TECHNOLOGIES, APPLICATIONS OF IoT					
22.1	1570806668	IoT Based Healthcare Kit for Domestic Usage	760				
22.2	1570809483	Enhanced Data-Driven LoRa LP-WAN Channel Model in Birmingham	766				
22.3	1570805789	Sparse Mobile Crowdsensing: Components and Frameworks	773				
22.4	1570806675	Smart Three in One System for Indoor Safety Assurance	779				
22.5	1570809113	Proposed Antenna Design for IoT and 5G-WiFi Applications	786				

Logistics is one of the most important activities in human life as a personal or organizational need. It refers to any activities related to the movement of goods [1]. The goods can be raw material, semi-finished, or finished products. The movement can be from one business to another in the same sector or different sectors. It can also be from manufactures to end customers directly or through distributor or retailers. Another definition Management [2]. The logistics is defined as a promeet the customers requirements. The logistics may involve different types of activities such as transportation. Inventory

Genetic Algorithm for Logistics-Route Optimization in Urban Area

Nur Uddin^{1,2*}, Hendi Hermawan^{1,2}, Nur Layli Rachmawati³, Hendy Tannady⁴

¹⁾Department of Informatics, Universitas Pembangunan Jaya, Tangerang Selatan, Indonesia

²⁾Center for Urban Studies, Universitas Pembangunan Jaya, Tangerang Selatan, Indonesia

³⁾Department of logistics Engineering, Universitas Pertamina, Jakarta, Indonesia

⁴⁾Department of Management, Universitas Multimedia Nusantara, Tangerang, Indonesia

*Corresponding author: nur.uddin@upj.ac.id

Abstract—This paper presents an optimal solution of logisticsroute planning especially in urban areas. This study is motivated by a significant increment of parcel deliveries due to the fast growing e-commerce sector. The parcel deliveries are a logistics activity, where transportation is one of the main concerns. The transportation gives a significant contribution to the logistics cost such that minimising it is desired. The transportation cost can be reduced through several methods and one of them is minimizing the travel distance. There are many route options for delivering the parcels but not all of them are the minimum-distance route. Finding the minimum-distance route is an optimization problem which is not an easy problem. In this study, the genetic algorithm (GA) is applied to obtain the optimal route which is the shortest distance route. A case study of planning a route for delivering 20 parcels in Tangerang Selatan City is presented. The route planning and GA are implemented in a computer program written in Python. Executing the program resulted in an optimal route represented in a map visualization and the total distance. The optimal route was obtained through 800 iterations which were completed in less than one minute of computation.

Index Terms—Genetic algorithm, Route optimization, City logistics, Transportation,

I. INTRODUCTION

Logistics is one of the most important activities in human life as a personal or organizational need. It refers to any activities related to the movement of goods [1]. The goods can be raw material, semi-finished, or finished products. The movement can be from one business to another in the same sector or different sectors. It can also be from manufacturers to end customers directly or through distributor or retailers. Another definition about logistics was also introduced by the American Council of logistics Management [2]. The logistics is defined as a process of planning, implementing, and controlling flow and storage product to meet the customers requirements. The logistics may involve different types of activities such as transportation, inventory maintenance, order processing, acquisition, protective packaging, warehousing, materials handling, and information maintenance [3].

The logistics has a purpose to creates a value of product to the customers, suppliers, retailers, and stakeholders. The value is represented by two variables, time and location. A product may have less value or no value at all unless it is at the right location and time according to customer needs. Logistics is a major concern in many companies to increase the product value. Unfortunately, the logistics is not free. The logistics is demanding cost that gives a significant contribution to the overall cost structure of the company.

Logistics costs may vary from company to company. The costs are influenced by several factors, such as the industry type, location of the company, location of the main market, and transportation infrastructure. A study shows that at least 6% of a company's sales revenue were spent in the logistics costs [4]. Another study reported that the logistics costs of pharmaceuticals product was 4% of sales revenue, while the logistics cost of the food product was more than 30% of the sales revenue [3]. In many companies, the logistics cost is being the second highest cost of running a business after cost of goods.

The logistics costs can be broken down into several cost components. Six cost components of the logistics were defined in [5]. Those are transportation, warehousing, stock management, administration, packaging, and indirect logistics costs. A calculation of the cost components with respect to the sales revenue was done and presented in [6]. The result showed that the transportation cost was the largest cost by spending 4.08% to 5.3% of the sales revenue. Meanwhile, the stock management cost was 1.79% to 5.7%, the warehousing was 1.75% to 3%, the administration was 0.23% to 1.5%, and other cost were 0.33% to 1.1% of the sales revenue.

Minimizing the overall costs is desired by every companies to increase the profits. It is done through minimizing the costs in any activities that may include the logistics. Since the transportation gives the biggest contribution to the logistics cost, minimizing the transportation cost will significantly reduce the logistics cost. The transportation took up one third of the logistics costs [7] and moreover, performance of the logistics is significantly affected by the transportation. There are several ways to reduce the transportation costs while maintain the logistics performance, such as fleet optimization [8]–[10] and route optimization [11]–[13]. The fleet optimization can be done through several methods, such as maximizing the fleet utilization [14], selecting the lowest fuel-consumption vehicles [15], and minimizing the fleet downtime [16]. Meanwhile route optimization is done by traveling on a route that re a minimum distance and travel time.

Route optimization has been an interesting research t since decades. The route optimization, also known as vel routing problems, is to optimize an itinerary of fleet takes a round trip with multiple stops [17]. The trip represent a flow of goods distribution in a city. The prev study shows that the route optimization was able to rethe transportation cost significantly. A route optimization save the transportation cost about 5-30% [18]. The fast g ing e-commerce have shifted consumer behavior espec in big cities. The consumer prefers to buy good three online market that gives more challenge to the logistics including the route optimization. This prompts to a new m development of logistics system in the cities. The scien community introduced two main concepts, known as the logistics and the urban logistics [17]. The city logistic defined as a process for totally optimizing the logistics transport activities by private companies in urban areas v considering the traffic environment, the traffic congest and energy consumption within the framework of a ma economy [19]. The urban logistics is a much larger con than the city logistics. The urban logistics includes all organizational, behavioral, regulation and financing elemas well as collaborative approaches, to study the logi processes and the movements of goods and service flow urban areas [20].

Route optimization of city logistics is the concern of study. Genetic algorithm is applied to obtain the optimal r that minimizes the travel distance. A study case preser route planning in delivering packages to twenty locat in Tangerang Selatan city. Presentation of this paper is organized as follows. Section I presents an introduc that includes background, motivation, and the purpose of study. Section II presents the applied method. It is descr the theory and implementation of the genetic algorithr solving the route optimization problem. The genetic algor is implemented in a computer program written in Python. route optimization is demonstrated in computer simulation the results are presented and discussed in Section III. Fin conclusion of this study is presented in Section IV.

II. METHODS

This section consists of three parts: problem formulatic the route optimization, genetic algorithm, and route optin tion using genetic algorithm. Each parts are described ir following subsections.

A. Genetic Algorithm

Genetic algorithm (GA) is an optimization method inst by the Charles Darwin's theory of natural evolution. A na evolution usually begins with a population undergoing na selection, where only the fittest individuals are to sur Reproduction is a natural process to produce offspring occurs in every creature, including survived individuals in the

Fig. 1: Flow chart of natural evolution.

natural selection. Matting among the survived individuals will results in offspring of new generation that are fitter than their parents. This new generation will undergo natural selection and remain only the fittest individuals as the survivors. Matting among the survivors will result in newer generation which are fitter than previous generation. The processes of selection and reproduction are repeated until producing a generation where the population passes the selection process. Figure 1 illustrates the natural evolution process into a flowchart.

The GA was introduced by John Holland in 1970s [21]. It was developed by imitating the process of natural evolution. The GA includes several steps as shown by a flowchart in Figure 2. Those steps are basically representing the two processes of natural evolution, the natural selection and the reproduction. Each steps of the GA is explained as follows:

 The GA begins by generating an initial population. The population is a set of individuals which are the solution candidates of a given problem. Each individual is represented by a chromosome which is a set of sequential parameters known as genes. This population can be mathematically expressed by the following equation:

$$P = \{C_i | i = 1, 2, ..., n\}$$
(1)

where P is the population, C_i is the chromosome of the i^{th} individual, i is the individual number in the population, and n is the total number of individuals in the population. The chromosome C_i is a set of genes and can be mathematically expressed as follows:

$$C_i = \{g_{i_j} | j = 1, 2, ..., m\}$$
⁽²⁾

where g_{i_j} is the j^{th} gene of the chromosome C_i .

Figure 3 shows an example of population that consists of three individuals that are represented by the chromosomes C_1 , C_2 , and C_3 . Each chromosome consists of eight genes that are denoted by g_{i_j} as the j^{th} gene of the chromosome C_i . For an examples, the gene g_{2_3} is represent the gene number 3 of chromosome number 2. Conorato initial

on of new

ration

						Рор	ulation
$C_1: \boxed{g}$	$g_1 \mid g_2$	g_3	g_4	g_5	g_6	g_7	g_8
$C_2: \boxed{g}$	$_{5}$ g_{6}	g_7	g_8	g_1	g_2	g_3	g_4
$C_3: \boxed{g}$	$_{5}$ g_{6}	g_2	g_3	g_4	g_7	g_8	g_1

						F	Populat	ior
$C_1: \boxed{g_{1_1}}$	g_{1_2}	g_{1_3}	g_{1_4}	g_{1_5}	g_{1_6}	g_{1_7}	g_{1_8}	
$C_2:$ g_{2_1}	g_{2_2}	g_{2_3}	g_{2_4}	g_{2_5}	g_{2_6}	g_{2_7}	g_{2_8}	
$C_3: g_{3_1}$	g_{3_2}	g_{3_2}	g_{3_4}	g_{3_5}	$g_{3_{6}}$	g_{3_7}	g_{3_8}	

Fig. 3: Example of a population of three individuals with eight genes on their chromosomes.

7	g_{2_8}
7	g_{3_8}

2) The next step	o is to evalua	te the fitne	ess of each	individuals	S	
Croinotherpopul	tion. The fi	tnæss <mark>eva</mark> lu	a#on i¶3d	on&susing a	g_{2_7}	g_{2_8}
fitness functi	on that calcu	ilates a fiti	ness score.	The fitness	8	
score indicat	s how $c_{o_2}^{\text{lose}}$	the indivi	$u_{g_{2_3}}$ to $g_{2_4}^{be}$	the optima	$\begin{bmatrix} g_{3_7} \end{bmatrix}$	g_{3_8}
solution of th	ie given prot	blem: The	re are seve	ral types of	ť—	
the fitness fu	inction that	can be ap	pplied [22]]. Based or	1	
the fitness s	core, all ind	lividuals a	are evaluat	ted whether	r 4)) T
satisfying a	criterion of	the desire	ed solution	n or not. It	f	g

Offspring

any individuals satisfies the criterion then the solution of given problem is obtained and the process of the GA is completed. However, if no one meets the criteria, then the GA process is continued by applying the GA operator.

- 3) In case, no individuals in the current population meets the solution criteria, GA operator is applied to produce a new generation that is fitter than the current generation. The GA operator imitates the selection and reproduction in natural evolution. The GA operator includes three operations: selection, crossover, and mutation. Those operations are explained as follows:
 - a) The selection is to choose the fittest individuals only. This selection is done based on the fitness score, where the individuals with the highest fitness scores are selected, while the others are dismissed. These selected individuals are known as the fittest individuals or the survivors. Assuming that from the initial population, no individuals satisfies the criterion such that the GA operator is applied and only the individuals C_2 and C_3 passed the selection. Both C_2 and C_3 are being the parents to produce offspring for the next generation.
 - b) The crossover is an imitation of reproduction process to result in offspring. The crossover is done by exchanging genes of parents chromosomes to produce new chromosomes as the offspring. The exchange can be done on one or more genes. Figures 4 shows an example of crossover by exchanging four genes which are the genes number 2 to 5 of the parents chromosomes, C_2 and C_3 . This crossover results in new individuals named the C_{o_1} and C_{o_2} , where their chromosomes are composed by a combination of the parent chromosomes. The crossover can be done by different combination and the exchanged genes numbers, and will result in many new individuals as the offspring. These new individuals build a new population.
 - The mutation is a change in the genes sequence of c) a chromosome. It is purposed to maintain genetic diversity in the population. The mutation can help to overcome local minimal in finding the global optima. There are several methods of mutation [23], such as twors mutation, center inverse mutation, reverse sequence mutation, throas mutation, thrors mutation, and partial shuffle mutation (PSM). Each mutation type may result in GA with different performance [24]. Figure 5 shows an example of mutation based on the twors mutation method. The twors mutation is the simplest mutation which is done by randomly swapping two genes in a chromosome. The mutation was happen on the new individual C_{o_1} where the genes number 3 and 7 are swapped. The mutation results in a new individual denoted by $C_{o_1}m_1$
- The GA operator results in a new population as the new generation. In order to obtain a solution that matches

Fig. 6: Map of the logistics office locations (car) and the locations of package destination (red dots).

Mutation

Fig. 5: Example of a mutation by randomly swapping two genes on a chromosome.

to the criterion, the new population comes to the the fitness evaluation as the process backs to the step 2. These processes are repeated until the criterion is satisfied.

B. Route optimization problem

Route optimization in transporting logistics is one of the most common problems in city logistics. The rapidly growing online market has resulted in a significant increase in the volume and frequency of parcel deliveries in major cities around the world and including Indonesia. The route optimization is to obtain a route for traveling from a departure point to all destination points with the best effort. The best effort can be described by different parameters depend on the objective, such as minimum travelling distance, minimum traveling time, or minimum fuel consumption. Assuming that the three parameters are proportional to each others, where the minimum distance results in the minimum time and minimum fuel consumption, and vice versa. Therefore, the objective of route optimization is to minimized the travelling distance.

This study presents a case of routing problem in logistics company to deliver packages in Tangerang Selatan. The objective is to obtain a route that results in minimum travelling distance in delivering the packages. Tangerang Selatan is one of the big cities in suburban Jakarta. It was populated by 1.8 million people in 2020 with the area of 147.2 km². Figure 6 shows a map of the logistics office indicated by the green car and the packages destination as indicated by the red dots. There are many red dots in the map and the k^{th} red dot is called the p_k . It is defined that the p_0 is the location of the logistics office. Location of the p_k is expressed by coordinate (x_k, y_k) . Route in delivering the packages is a round-trip route where the starting and finishing points are located at the same point which is the logistics office. Moreover, the route is only visiting a destination one time. The total travel distance is defined as an accumulated distance between the destinations in the route.

Distance between two destinations p_k and p_{k-1} is calculated based on the Euclidean distance as follows:

$$d_k = \sqrt{(x_k - x_{k-1})^2 + (y_k - y_{k-1})^2},$$
(3)

where d_k is the distance between p_k and p_{k-1} , x_k and y_k are the coordinate of p_k , and x_{k-1} and y_{k-1} are the coordinate of p_{k-1} . Meanwhile, the total travel distance is an accumulated

distance and defined as follows:

$$D = \sum_{k=1}^{m+1} d_k = \sum_{k=1}^{m+1} \sqrt{(x_k - x_{k-1})^2 + (y_k - y_{k-1})^2} \quad (4)$$

where m is the number of destinations. The coordinates (x_0, y_0) is the departure point and (x_{m+1}, y_{m+1}) is the last destination. Both (x_0, y_0) and (x_{m+1}, y_{m+1}) are the same place.

III. RESULTS

The GA algorithm is applied to optimize route in delivering packages by resulting in minimum travel distance. The pack-

							Pop	ulatio	on
$C_1:$	g_1	g_2	g_3	g_4	g_5	g_6	g_7	g_8	
$C_2:$	g_5	g_6	g_7	g_8	g_1	g_2	g_3	g_4	
$C_3:$	g_5	g_6	g_2	g_3	g_4	g_7	g_8	g_1	

Fig. 7: Population of the routing problem.

The fitness evaluation is done by evaluating that each chromosofine has the first and the last genes equal to p_0 , and

• •									•• P(<i>,,</i> ,
ossover result	$C_{o_1}:$	g_{2_1}	g_{3_2}	g_{3_3}	g_{3_4}	g_{3_5}	g_{2_6}	g_{2_7}	g_{2_8}	
٢	C_{o_2} :	g_{3_1}	g_{2_2}	g_{2_3}	g_{2_4}	g_{2_5}	g_{3_6}	g_{3_7}	g_{3_8}	

the other genes represent all destinations. Since the minimum travel distance is actually unknown, the solution criterion is satisfied by the iteration number. In this case, the iteration number should be selected as a big enough such that the travel distance does not change for a long iteration.

Algorithm 1: Classical genetic algorithm
Input :
Population size, n
Maximum number of iteration, MAX
Output:
Global best solution, Y_{bs}
begin
Generate initial population of n chromosomes, Y_i
Set iteration counter $t = 0$
Compute the fitness value of each chromosomes
while $t < MAX$ do
Select a pair of chromosomes from initial
population based on fitness
Apply crossover operation on selected pair with
crossover probability
Replace old population with newly generated
population
Increment the current iteration t by 1
end
Return the best solution, Y_{bs}
end

A computer program is developed in Python to implement the GA in solving the routing problem. Algorithm of the program is shown in Algorithm 1. There are 20 destinations in delivering the package. The program creates 50 individual of population in each generation. Iteration of the program is limited up to 5000 such that the program simulates up to the 5000th generation. Running the program resulted in the total travel distance shown in Figure 8. The figure shows that the best individuals in the first generation resulted in a total distance of 58 km. The total distance decreases significantly from the generation 1 to the generation 800 and resulted in the total travel distance of 31.46 km. There is no change in total distance from generation 800 to generation 5000. Therefore, the optimal route in delivering the package resulted in total distance of 31.46 km. Visualization of the optimal route is shown in Figure 9.

IV. CONCLUSION

A study of finding optimal route as solution in city logistics has been presented by applying the GA algorithm. A study case presented a routing problem to deliver packages to 20 different destinations. The GA algorithm was implemented and simulated in a Python program. The simulation results shown that the GA was able to solve the routing problem. The optimal solution was obtained within 800 iterations which required computing time less than a minute. The optimal route resulted in a total travel distance of 31.26 km for delivering packages to the 20 destinations. This results show that the GA is very

Fig. 8: The total travel distance at each generation.

Fig. 9: Optimal route for delivering the packages.

effective in solving the routing problem. Applying the GA in more complex routing problem and considering actual road traffic condition is considering as a further study.

ACKNOWLEDGEMENT

The authors acknowledge a financial support from Universitas Pembangunan Jaya through Internal Grant No. 002/PER-P2M/UPJ/11.21.

REFERENCES

 N. Viswanadham and R. Gaonkar, "E-logistics: trends and opportunities," E-Logistics Research WP: TLI-AP/01/01, January, The Logistics Institute Asia-Pacific, 2001.

- [2] A. Kumar, "Green logistics for sustainable development: an analytical review," *IOSRD International Journal of Business*, vol. 1, no. 1, pp. 7–13, 2015.
- [3] R. H. Ballou, "Business logistics: importance and some research opportunities," *Gestão & Produção*, vol. 4, pp. 117–129, 1997.
- [4] R. Muha, "An overview of the problematic issues in logistics cost management," *Pomorstvo*, vol. 33, no. 1, pp. 102–109, 2019.
- [5] A. Z. Zeng and C. Rossetti, "Developing a framework for evaluating the logistics costs in global sourcing processes: An implementation and insights," *International Journal of Physical Distribution & Logistics Management*, 2003.
- [6] J. Engblom, T. Solakivi, J. Töyli, and L. Ojala, "Multiple-method analysis of logistics costs," *International Journal of Production Economics*, vol. 137, no. 1, pp. 29–35, 2012.
- [7] Y.-y. Tseng, W. L. Yue, M. A. Taylor *et al.*, "The role of transportation in logistics chain." Eastern Asia Society for Transportation Studies, 2005.
- [8] Y. Yang, Z. Yuan, X. Fu, Y. Wang, and D. Sun, "Optimization model of taxi fleet size based on gps tracking data," *Sustainability*, vol. 11, no. 3, p. 731, 2019.
- [9] B. Wang, S. A. O. Medina, and P. Fourie, "Simulation of autonomous transit on demand for fleet size and deployment strategy optimization," *Procedia computer science*, vol. 130, pp. 797–802, 2018.
- [10] C. Both and R. Dimitrakopoulos, "Joint stochastic short-term production scheduling and fleet management optimization for mining complexes," *Optimization and Engineering*, vol. 21, no. 4, pp. 1717–1743, 2020.
- [11] W. Liu, "Route optimization for last-mile distribution of rural ecommerce logistics based on ant colony optimization," *IEEE Access*, vol. 8, pp. 12 179–12 187, 2020.
- [12] D. Li, Q. Cao, M. Zuo, and F. Xu, "Optimization of green fresh food logistics with heterogeneous fleet vehicle route problem by improved genetic algorithm," *Sustainability*, vol. 12, no. 5, p. 1946, 2020.
- [13] W.-C. Hu, H.-T. Wu, H.-H. Cho, and F.-H. Tseng, "Optimal route planning system for logistics vehicles based on artificial intelligence," *Journal of Internet Technology*, vol. 21, no. 3, pp. 757–764, 2020.
- [14] A. Galkin, M. Olkhova, S. Iwan, K. Kijewska, S. Ostashevskyi, and O. Lobashov, "Planning the rational freight vehicle fleet utilization considering the season temperature factor," *Sustainability*, vol. 13, no. 7, p. 3782, 2021.
- [15] Y. Huang, N. C. Surawski, B. Organ, J. L. Zhou, O. H. Tang, and E. F. Chan, "Fuel consumption and emissions performance under real driving: Comparison between hybrid and conventional vehicles," *Science of the Total Environment*, vol. 659, pp. 275–282, 2019.
- [16] A. Puzyrevskaya, N. Pogotovkina, Y. N. Gorchakov, and V. Ovsyannikov, "Shortening unscheduled downtime for more efficient use of haul trucks," in *IOP Conference Series: Earth and Environmental Science*, vol. 988, no. 4. IOP Publishing, 2022, p. 042036.
- [17] D. Cattaruzza, N. Absi, D. Feillet, and J. González-Feliu, "Vehicle routing problems for city logistics," *EURO Journal on Transportation* and Logistics, vol. 6, no. 1, pp. 51–79, 2017.
- [18] G. Hasle, K.-A. Lie, and E. Quak, Geometric modelling, numerical simulation, and optimization. Springer, 2007.
- [19] E. Taniguchi, R. G. Thompson, T. Yamada, and R. van Duin, "Modelling city logistics," in *City logistics*. Emerald Group Publishing Limited, 2001.
- [20] S. Anderson, J. Allen, and M. Browne, "Urban logistics—how can it meet policy makers' sustainability objectives?" *Journal of transport* geography, vol. 13, no. 1, pp. 71–81, 2005.
- [21] J. H. Holland, Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT press, 1992.
- [22] A. L. Nelson, G. J. Barlow, and L. Doitsidis, "Fitness functions in evolutionary robotics: A survey and analysis," *Robotics and Autonomous Systems*, vol. 57, no. 4, pp. 345–370, 2009.
- [23] O. Abdoun, J. Abouchabaka, and C. Tajani, "Analyzing the performance of mutation operators to solve the travelling salesman problem," *arXiv* preprint arXiv:1203.3099, 2012.
- [24] R. T. Bye, M. Gribbestad, R. Chandra, and O. L. Osen, "A comparison of ga crossover and mutation methods for the traveling salesman problem," in *Innovations in Computational Intelligence and Computer Vision*. Springer, 2021, pp. 529–542.

CERTIFICATE OF PRESENTER

THIS IS HEREBY PRESENTED TO

NUR UDDIN (UNIVERSITAS PEMBANGUNAN JAYA, INDONESIA)

FOR THE PAPER TITLED

GENETICS ALGORITHM FOR LOGISTIC-ROUTE OPTIMIZATION IN URBAN AREA

IN THE SESSION

ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING (SESSION 3)

AT IEEE AlloT 2022 ON 6TH - 9TH JUNE 2022

SON VUONG General co-chair, AlloT 2022 SATYAJIT CHAKRABARTI

President, SMART Society

IEEE AIIOT 2022 VIRTUAL CONFERENCE

IEEE WORLD AI IOT CONGRESS 2022

