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1  |  INTRODUC TION

Seaweeds can produce a variety of structurally and functionally 
unique bioactive components for human benefit. This is signifi-
cant in a wide range of applications from the pharmaceutical to 
food industries (Bhuyar et al.,  2021; Ramli et al.,  2020). Some 
edible brown seaweeds have been used in major commercial in-
dustries as an abundant and renewable potential source of not 

only food, but also medicinal and chemical products, such as pig-
ments, nutrients, cosmetics, and hydrocolloids, in Asia, partic-
ularly in Japan and China (Zhu et al., 2009). Undaria pinnatifida 
(“wakame” in Japanese), Nemacystus decipiens (“itomozuku”), and 
Sargassum species have already been commercially cultivated to 
meet the industry's growing demand (Milledge & Harvey, 2016; 
Nisizawa et al.,  1987; Pan et al.,  2019; Tako et al.,  1999; Wang 
et al., 2018).
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Abstract
Fucoxanthin, an algal carotenoid with bioactivity that benefits human health, is gain-
ing popularity as a functional food. Therefore, in this study, the effect of drying meth-
ods and conditions on the production of fucoxanthin isomers in three closely related 
Sargassum species with slightly different morphological lamina were investigated. The 
recovery of fucoxanthin after oven-drying was 1.1–1.3-fold higher than that after sun-
drying and varied 1.6-fold among the S. species used, indicating that each algal species 
has a different heat susceptibility even among closely related species, and should be op-
timized for each species and drying method. In Padina australis with homogeneous mor-
phology, the optimal temperature to maintain all-trans form was 60°C with only a 5.3% 
loss, while other cis-isomer transformations were maintained at 80°C. The apparent 
activation energy estimated by Arrhenius plots differed for the all-trans form and cis-
isomer transformations, indicating the presence of different reactions between them.

Practical applications
Drying treatment is an efficient and cost-effective technique for reducing the mois-
ture content of post-harvest seaweed to prevent decomposition, increase shelf life, 
and easily extract the targeted compounds. Owing to the difference in heat suscepti-
bility, even in closely related species, the results indicated that it should be necessary 
not only to select appropriate algal species and drying methods but also to optimize 
the thermal conditions for each target substance of the selected material. This study 
provided qualitative information, particularly on seaweed drying procedures, and 
contributed to the production of marine products in the fields of food and bioactive 
substances, such as fucoxanthin isomers.
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Sargassum species are naturally grown on almost all of Indonesia's 
coast, and in 2019, they had the highest production of brown sea-
weed, reaching 1340 tons with a value of 304,000 USD for alginate 
purposes (BPS–Statics Indonesia,  2020). Furthermore, it is known 
that Sargassum species contain relatively high amounts of fucox-
anthin and chlorophyll (Chl) a averaging 0.43 to 4.11 mg·g−1 dry 
weight (d.w.) and 1.70 to 7.89 mg·g−1 d.w., respectively (Heriyanto 
et al., 2017).

Fucoxanthin is a pigment component of brown alga that is classi-
fied as a xanthophyll carotenoid possessing a distinct structure, such 
as allenic, epoxide, and acetyl groups. Owing to its structure, fucox-
anthin is expected to provide several health benefits to humans, 
such as anti-obesity, anti-diabetic, anti-tumor, anti-inflammation, 
and antioxidant properties (Gammone & D'Orazio,  2015; Kang 
et al.,  2014; Lee et al.,  2021; Lourenço-Lopes et al.,  2022; Maeda 
et al., 2008), and be more effective than β-carotene and lycopene 
in inhibiting cell growth and inducting apoptosis in human cancer 
cells (Hosokawa et al., 2004). The cis-isomers of carotenoids are sug-
gested to enhance their incorporation into cells by increasing their 
solubility (Honda et al., 2017, 2018). It was demonstrated that the 
inhibitory effect of 13-cis and 13′-cis fucoxanthin isomers on cancer 
cell growth was stronger than that of the all-trans form (Nakazawa 
et al., 2009).

Recently, the effect of drying on the recovery of pigments and 
other functional compounds from various species of brown seaweed 
was reported (Badmus et al., 2019; Silva et al., 2019). They recog-
nized the effectiveness of drying post-harvest. However, depending 
on the algal species and objective compounds used, the optimum 
temperature for drying methods involving oven, freeze, and micro-
wave varied in the range of 25–60°C. Therefore, it was concluded 
that the target compound of each alga must be heated to an appro-
priate temperature.

In this study, we investigated the effect of drying on the recov-
ery of fucoxanthin and its isomers, which have potential bioactiv-
ity and health benefits for humans. Three closely related Sargassum 
with slightly different morphological structures were used to clarify 
the relationship between morphological structure and heat suscep-
tibility after drying with a fixed moisture content of 10%. After dry-
ing, an optimum temperature for fucoxanthin isomer production was 
determined in Padina australis with a simple fan-shaped structure. 
The use of the intensity ratio of mass spectrometry (MS) fragment 
ions for the differentiation of fucoxanthin isomers with geometric 
fine structures is also discussed as a useful alternative method.

2  |  MATERIAL S AND METHODS

2.1  |  Chemicals

Analytical grade methanol (MeOH), acetone, methyl tert-butyl ether 
(MTBE), and ammonium acetate were the solvents used for pigment 
extraction and high-performance liquid chromatography (HPLC), 
while liquid chromatography grade water (H2O), MeOH, and formic 

acid were used for MS analysis and were obtained from Merck 
(Darmstadt, Germany). Standard pigments, Chl c1, Chl c2, all-trans 
fucoxanthin, Chl a, and pheophytin (pheo) a, were obtained from 
NATChrom (Malang, East Java, Indonesia).

2.2  |  Seaweed samples

Three closely related but morphologically distinct S. species and P. 
australis were used as algal materials. S. polycystum with large lami-
nae, S. species with wide and long laminae, Sargassum filipendula 
with small laminae, and P. australis with fan-shaped homogenous 
laminae were collected from certified seaweed farms in Teluk Awur 
beach, Jepara, Central Java, Indonesia (6°36′46.8′′S 110°38′29.1′′E). 
Photos of S. species are presented in Figure  S1 (for a photo of P. 
australis, refer to Heriyanto et al., 2017). The seaweed was cleaned 
of any associated debris by rinsing with clean seawater and then tap 
water. During transportation to the laboratory, samples were placed 
in black plastic bags and placed in a cooling box.

2.3  |  Pigment extraction

Fresh algal thalli were frozen with liquid N2 before being ground into 
fine particles with a blender. To extract the pigment, 0.1 g of sample 
was homogenized in a vortex for 1 min with 1 ml of acetone:MeOH 
(3:7, v/v) and then sonicated for 1 min to break the cells. The crude 
pigment extract was separated from its residue by centrifugation at 
10,000g for 2 min at ambient temperature. The residue was continu-
ously extracted using the same procedure until the residue appeared 
colorless. The pigment extracts were mixed and dried in an N2 gas 
stream. The dry powders from Sargassum and Padina species were 
extracted using a method proposed by Ishihara et al.  (2008) with 
a slight modification. The pigments from 0.1 g of dry powder were 
extracted using the same methods as the fresh sample and finally 
dissolved in acetone.

2.4  |  Pigment determination

The pigments were identified using absorption spectrometry, HPLC, 
and MS analysis based on the spectral shape, maximal absorption 
wavelength (λmax), and Q-ratio (spectrometry); retention time (tR) 
(HPLC); and precursor and fragment ions and intensity ratio of frag-
ment ions (MS). The following sections describe the specific tech-
niques performed for pigment identification. The modified standard 
curve of the pigments from the linear equations was used to calcu-
late pigment concentrations in mg·g−1 d.w. (Heriyanto et al., 2017). 
Similarly, fucoxanthin isomer concentrations were calculated using 
a linear equation based on the all-trans fucoxanthin standard curve 
(y = 198.89x − 335.62; R2 = 0.9994, where y is the peak area de-
tected at 450 nm (× 10−3) and x is fucoxanthin isomer concentration 
(μg·ml−1)).
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2.4.1  |  Absorption spectrometry

The UV-1700 spectrophotometer (Shimadzu, Kyoto, Japan) was used 
to record the absorption spectra of the pigment extracts in acetone 
from 300 to 800 nm. To identify the types of cis-isomers, an empiri-
cal absorption ratio, Q-ratio (Aλmax cis peak/Aλmax main peak), was used.

2.4.2  |  HPLC analysis

HPLC analysis was performed using reversed-phase (RP)-HPLC 
with a photodiode array detector (Shimadzu). The pigment was 
separated using a Shim-pack VP-ODS C18 column (250 × 4.6 mm i.d.) 
(Shimadzu), and the fucoxanthin isomers were separated using a C30 
column (150 × 4.6 mm i.d., 3 μm particle size) (YMC, Tokyo, Japan) 
according to Wibowo et al., 2022. In brief, the separation was carried 
out using a gradient elution program of water, MeOH, and MTBE 
mixture as the mobile phase at a column oven temperature of 30°C 
and a flow rate of 1.0 ml·min−1.

2.4.3  | MS analysis

The fucoxanthin isomers were analyzed using electrospray ioniza-
tion (ESI)–LC triple quadrupole MS, LCMS-8030 (Shimadzu), on a 
Chromolith Performance RP-18e column (100 × 4.6 mm i.d.) (Merck 
KGaA) with an isocratic elution program of 0.1% formic acid in 
water (A solvent, 10%) and 0.1% formic acid in MeOH (B solvent, 
90%) at a column oven temperature of 30°C and a flow rate of 
1.5 ml·min−1. The standard pigments were analyzed using an iso-
cratic elution program of 50% A solvent and 50% B solvent with-
out a column at a flow rate of 0.4 ml·min−1. As previously described, 
MS analysis was performed in the mass range from 200 to 1000 m/z 
(Brotosudarmo et al., 2018). The spectral data obtained by a full Q1 
scan and product–ion scan at the collision energy (CE) = −10 V from 
the fucoxanthin standard and its isomeric forms were saved in the 
LabSolution MS Library (Shimadzu) and then analyzed using the pre-
viously described method (Heriyanto et al., 2021).

2.4.4  |  Fragment-ion ratio for fucoxanthin isomer 
identification

A novel ratio obtained from the MS analysis was used to identify 
the fucoxanthin isomers. Carotenoids with very similar struc-
tures can be distinguished by comparing the intensities of their 
fragments, which are commonly the base peaks produced by the 
product–ion scan in the ESI–MS/MS analysis (Rivera et al.,  2013; 
Wibowo et al.,  2022). Fucoxanthin isomers (C42H58O6) had the 
same precursor ion at m/z 659.5 [M + H]+ and product ions at m/z 
641.5 [M + H–H2O]

+ and m/z 581.4 [M + H–H2O–HOCOCH3]
+ 

which were formed by loss of water molecule, and water and acetic 
acid molecules, respectively (cf. Table S2). Their ratios are defined 

as follows: ratio of loss of water molecule (%)  =  Ifragment ion [m/z 
641.5]/Ifragment ions [m/z 641.5 + 581.4] × 100 and ratio of loss of water 
and acetic acid molecules (%)  =  Ifragment ion [m/z 581.4]/Ifragment ions 
[m/z 641.5 + 581.4] × 100, where Ifragment ion [m/z 641.5], Ifragment ion 
[m/z 581.4], and Ifragment ions [m/z 641.5 + 581.4] represent the inten-
sity of loss of water molecule, intensities of loss of water and acetic 
acid molecules, and sum of the intensities of loss of water molecule 
and water and acetic acid molecules, respectively.

2.5  |  Drying methods

To evaluate the efficiency of drying methods, three S. species with 
various lamina sizes and shapes were dried using two different meth-
ods: sun-drying and oven-drying. Seaweeds (1500 g fresh weight) 
were oven-dried at 50°C in the dark, and sun-dried at an ambient 
temperature of 35–41°C and light intensity (2060 μmol·m−2·s−1 maxi-
mum). Both drying processes were continued until the final moisture 
content reached 10%. P. australis was used to determine the optimal 
temperature for cis-isomer formation during the oven-drying treat-
ment. As a sample suitable for minimizing errors between samples, 
P. australis has a fan-shaped homogeneous lamina and high contents 
of fucoxanthin (Indrawati et al.,  2010). To obtain consistent dried 
samples, the seaweed was dried in the range 40–100°C at 20°C in-
tervals until their moisture content was 10% under dark conditions 
by changing the duration of drying time at each temperature as: 
45.5 h at 40°C, 25.5 h at 60°C, 17.0 h at 80°C, and 5.5 h at 100°C. 
This treatment reduced the weight of the samples by approximately 
10%, making it easier to handle, particularly the extraction of the 
pigments and extension of shelf life.

2.6  |  Statistical analysis

All the experiments were carried out in triplicate with at least three 
samples. The average and standard error were calculated with a 95% 
confidence level. Fucoxanthin isomer concentrations were calcu-
lated using the same extinction coefficient as the all-trans form.

3  |  RESULTS AND DISCUSSION

3.1  |  Effect of drying on the fucoxanthin and Chl 
concentrations

The pigment concentrations were revealed using HPLC with a pho-
todiode array detector before (fresh) and after drying treatments 
at 10% moisture content, as described in Section  2.5. The con-
centrations of fucoxanthin in fresh seaweeds ranged from 0.88 to 
0.93 mg·g−1 d.w. among the three S. species, with P. australis having a 
1.7-fold higher concentration (1.56 mg·g−1 d.w.) than the other S. spe-
cies (Table 1). These values were consistent with previously reported 
values of 0.75 and 1.64 mg·g−1 d.w. in S. crassifolium and P. australis, 
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respectively (Heriyanto et al.,  2017). S. filipendula with small lami-
nae and long stipe had a high recovery of fucoxanthin at 97.7% and 
92.0% in the oven- and sun-drying methods, respectively, whereas 
S. species with wide and long laminae had the lowest recovery of 
62.4% and 57.0% in the oven- and sun-drying methods, respectively. 
Fucoxanthin recovery after oven-drying was up to 99.9% in P. aus-
tralis, while sun-drying had a low recovery of 36.0%. In terms of fu-
coxanthin recovery, these results indicated that oven-drying is more 
effective than sun-drying. Furthermore, despite having nearly com-
parable concentrations in fresh materials, their recovery by both the 
drying treatments varied among the Sargassum species. These dif-
ferences in fucoxanthin recovery after drying appear to be primarily 
due to differences in the morphological structure of the lamina in the 
S. species. This may have resulted in different heat susceptibility. As 
stipe in brown seaweed has more hard tissues and high endurance to 
maintain pigments against heat exposure than laminae, S. filipendula 
had the highest fucoxanthin recovery. As opposed to fucoxanthin 
recovery, the sun-drying method was more effective in recovering 
Chl a among the three S. species, with 54% to 40.9% compared to 
37.9% to 19.4% for the oven-drying method. These findings were 
consistent with the recovery of Chl a in P. australis after both drying 
treatments. Based on the findings of Badmus et al. (2019), not only 
the selection of algal materials but also the drying method is critical 
for each target material when drying treatment is used.

3.2  |  Effect of drying on the pigment composition

The absorption spectra of fresh thalli extracts, and sun- and oven-
dried samples obtained from the sample algae showed nearly identi-
cal absorption spectra. Qy-band decreased by 13.1–43.1% and pheo 

formation were observed in the three S. species, while its band in 
P. australis decreased by 18.6–32.3%, and there was no significant 
absorption of pheo. In terms of fucoxanthin, as revealed by absorb-
ance at 447 nm, the recovery in oven-dried samples was 50.4–84.9% 
in the three S. species and 70.6–76.5% in P. australis, which was 
higher than the recovery in sun-dried samples, as shown in Table 1. 
Figure S2 shows the absorption spectra of the pigments extracted 
from each algal species.

The pigments extracted from fresh and oven-dried seaweed 
were then analyzed by HPLC alongside their standard pigments to 
determine the pigment composition. All the brown seaweed samples 
were separated and identified into four main peaks. As an example, 
typical HPLC elution profiles of pigment extracts from S. polycys-
tum are seen in Figure 1. Peak 1 corresponds to Chl c (mixture of c1 
and c2), peak 2 corresponds to fucoxanthin, peak 3 corresponds to 
Chl a, and peak 4 corresponds to Pheo a, based on the tR, λmax, and 
spectral shape. Using the same identification procedures, the minor 
components at tR 39 and 58 min were also determined to be Chl a' 
and β-carotene, respectively. Figure S3 shows the in-line absorption 
spectra of the peaks and standard pigments. In the fresh seaweed, 
at least three pigments were detected: Chl c (peak 1), fucoxanthin 
(peak 2), and Chl a (peak 3). According to the absorption spectrum, 
an additional pigment, Pheo a (tR = 38 min), was detected in dried 
seaweed. Peak 2 fucoxanthin intensity varied slightly between fresh 
and dried seaweeds. By contrast, a significant decrease in peak 3, 
Chl a, was observed, indicating that a portion of Chl a was converted 
into Pheo a of peak 4. The MS analysis of their precursor and frag-
ment ions supported the identification of the pigments from brown 
seaweed. Table S1 summarizes the pigment identification process.

The fucoxanthin component was then analyzed to determine 
its isomers using HPLC and MS analysis with pigment extracts from 

TA B L E  1 Concentrations of the pigments were quantified by HPLC with a photodiode array detector before (fresh) and after drying 
treatments

Brown seaweed Drying treatment

Fucoxanthin Chl a

Concentration ± SE 
(mg·g−1) Recovery (%)

Concentration ± SE 
(mg·g−1) Recovery (%)

Sargassum polycystum Fresh 0.89 ± 0.03 100 2.61 ± 0.18 100

Oven 0.75 ± 0.01 84.3 0.99 ± 0.07 37.9

Sun 0.58 ± 0.02 65.2 1.17 ± 0.05 44.8

Sargassum sp. Fresh 0.93 ± 0.07 100 2.47 ± 0.19 100

Oven 0.58 ± 0.02 62.4 0.64 ± 0.03 25.9

Sun 0.53 ± 0.02 57.0 1.01 ± 0.01 40.9

Sargassum filipendula Fresh 0.88 ± 0.05 100 2.37 ± 0.33 100

Oven 0.86 ± 0.07 97.7 0.46 ± 0.02 19.4

Sun 0.81 ± 0.11 92.0 1.28 ± 0.05 54.0

Padina australis Fresh 1.56 ± 0.05 100 3.81 ± 0.30 100

Oven 1.56 ± 0.11 99.9 0.80 ± 0.07 21.0

Sun 0.53 ± 0.01 36.0 0.95 ± 0.02 24.9

Note: Oven-drying treatment was performed at 50°C for 30 h in the dark, while sun-drying was performed at approximately 40°C for 36 h with light 
intensity of 2060 μmol·m−2·s−1 (maximum) to reach 10% of moisture content. The results are averages of three experiments, and SE is shown.
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oven-dried P. australis as a sample. At least four peaks belonging to 
fucoxanthin isomers were well separated on a C30 column within 
20 min at elution times of 13.72 (peak 1), 14.88 (peak 2), 15.55 (peak 
3), and 17.44 min (peak 4) (Figure  S4). These fucoxanthin isomers 
were initially identified spectrophotometrically by comparing their 

λmax and Q-ratio (Aλmax cis peak/Aλmax main peak) from their in-line absorp-
tion spectra of the HPLC (Haugan & Liaaen-Jensen, 1994), namely 
all-trans (peak 1; Q-ratio = 0.08), 13′-cis (peak 2; Q-ratio = 0.48), 13-
cis (peak 3; Q-ratio = 0.43), and 9′-cis (peak 4; Q-ratio = 0.12) as sum-
marized in Table 2. Furthermore, the purified fucoxanthin isomers 
from P. australis were analyzed by LCMS/MS using the modes of Q1 
(+) and product ion scans (CE = −10 V) at the described analytical 
conditions. Table S2 shows a typical ESI–LCMS/MS spectral data.

Another newly discovered ratio through MS analysis was also 
used to identify the fucoxanthin isomers. As seen in Table  2, the 
ratio of water molecule loss (I) was highest in 13′-cis (70%) followed 
by all-trans (66%), 13-cis (56%), and 9′-cis (17%), while the ratio of 
water and acetic acid molecule loss (II) was highest in 9′-cis isomer of 
fucoxanthin (83%). The same results were obtained previously using 
high purity isomers for (I) (Wibowo et al., 2022). Therefore, either 
ratio, in addition to another absorption ratio, the Q-ratio, which has 
been frequently used to identify cis-isomers as mentioned above, is 
well applicable to different types of fucoxanthin isomers. Therefore, 
it is reasonable to conclude that this ratio is a useful alternative for 
identifying different types of fucoxanthin isomers, although further 
research into the correlation between these fragment-ion ratios and 
geometrical fine structures is required.

3.3  |  Effect of drying on the formation of 
fucoxanthin isomers

Based on the findings of the preceding study, the optimal condi-
tions for fucoxanthin and its isomers were determined using the 
oven-drying method. Due to its simple morphological structure 
and to obtain homogeneous samples, P. australis was selected as 
the source of fucoxanthin rather than S. species. To determine the 
optimum concentrations of fucoxanthin isomers, oven drying tem-
peratures varied from 40 to 100°C at 20°C intervals. Each sam-
ple was dried to 10% of its moisture content to achieve constant 
drying.

As seen in Figure 2a, relatively high concentrations of all-trans 
fucoxanthin of 1244.1 and 1176.0 μg·g−1 d.w. were obtained after 
45.5  h at 40°C and 25.5  h at 60°C. This indicated that at 60°C, 
94.5% of the all-trans fucoxanthin was recovered compared to 40°C 

F I G U R E  1 Typical HPLC elution profiles of the pigment extracts 
from Sargassum polycystum detected at 430 nm (a) and the standard 
pigments at their λmax (b). (a): fresh (black), oven (red), and sun 
(green). (b): Chl c1 (black), Chl c2 (orange), fucoxanthin (green), Chl a 
(blue), and Pheo a (red).

TA B L E  2 Simultaneous separation and identification of fucoxanthin isomers by HPLC with a C30 column and MS analysis

No peak tR (min) λmax (nm)
Fucoxanthin 
isomer

Q-ratio Intensity
Intensity 
ratio (%)

This study Referencea m/z 641.5 m/z 581.4 (I)b (II)c

1 13.72 334, −, 451, − All-trans 0.08 0.07 8382 4350 66 34

2 14.88 333, −, 445, − 13′-cis 0.48 0.52 10,007 4346 70 30

3 15.55 332, −, 440, − 13-cis 0.43 0.45 13,886 10,678 56 44

4 17.44 332, −, 448, − 9′-cis 0.12 0.12 3435 16,215 17 83

aHaugan and Liaaen-Jensen (1994).
bIfragment ratio (I) (%) = I[m/z 641.5]/I([m/z 641.5] + [m/z 581.4]) × 100.
cIfragment ratio (II) (%) = I[m/z 581.4]/I([m/z 641.5] + [m/z 581.4]) × 100.
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and nearly half the drying time. However, with increasing tempera-
tures, the recovery of all-trans fucoxanthin decreased significantly, 
reaching 23.1% at 80°C for 17 h and nearly 10.0% at 100°C for 5.5 h 
of drying with the same moisture content.

Arrhenius plots are frequently used to investigate the effect 
of temperature on the rates of chemical reactions. This method 
was also used to examine the temperature-dependent results in 
greater detail (Figure  3). The Arrhenius plots obtained from all-
trans fucoxanthin concentration measurements were biphasic 
with a break at 60°C, indicating the existence of two reaction 
processes with different straight lines (40–60°C and 60–100°C) 
for which apparent activation energies of −2.46 kJ/mol (40–60°C) 
and − 58.2 kJ/mol (60–100°C) can be calculated (Figure 3a). These 
negative values indicated the spontaneous degradation of all-trans 
isomers by heating, although, in a low-temperature phase (40–
60°C), some amounts of the isomer appear not to be degraded, but 
transformed to cis-isomers, since their amounts are almost equiv-
alent and the low-temperature phase (40–80°C) of cis-isomers 
increase with positive activation energy due to unspontaneous 
degradation.

In the case of cis-isomers, such as 13′-, 13-, and 9′-cis fucoxan-
thin, their concentrations increased with increasing temperature up 
to 80°C, whereas all-trans fucoxanthin concentrations decreased 
(Figure  3b), indicating the occurrence of the transformation of 
these cis-isomers. The concentrations of all cis-isomers, including 
9′-cis, increased by 16.7–35% at 80°C and reached a maximum, 
then dropped sharply to those found at 40°C or less at 100°C. The 
Arrhenius plots obtained from the measurements of the three fu-
coxanthin isomers were mostly parallel with a similar slope of lines 
and biphasic with a break at 80°C, switching from the formation 
(positive activation energy) to the degradation (negative activation 
energy) process. The activation energy represents the minimum 
amount of energy required to undergo stereomutation. The appar-
ent activation energies of 13′-cis, 13-cis, and 9′-cis were calculated 
to be 6.44 kJ/mol (40–80°C) and − 16.8 kJ/mol (80–100°C), 4.12 kJ/
mol (40–80°C) and − 12.4 kJ/mol (80–100°C), and 4.84 kJ/mol (40–
80°C) and − 7.54 kJ/mol (80–100°C), respectively. The Arrhenius plot 
was used to transform fucoxanthin isomers for the first time, and 
no comparable data exist. These findings imply that optimal condi-
tions for fucoxanthin isomer formation differ between all-trans and 

F I G U R E  2 Concentrations of the fucoxanthin isomers extracted from oven-dried Padina australis at the indicated temperatures for drying 
time required to reach 10% moisture content. The results are averages of three experiments with SE. (a) All-trans isomer, and (b) 13′-cis, 13-
cis, and 9′-cis isomers.

F I G U R E  3 Arrhenius plots of the 
concentrations of all-trans fucoxanthin (a) 
and cis-isomers of fucoxanthin (b) versus 
drying temperature and time for reaching 
10% moisture content of the oven-dried 
Padina australis. The results are averages 
of three experiments.
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other cis-isomer transformations, implying the presence of different 
reactions between them. As demonstrated here, heat treatment im-
proved the stereomutation of fucoxanthin isomers in thalli. This is 
the first study that reported in vivo stereomutation of fucoxanthin in 
algal samples by heat, although there were several reports on in vitro 
stereomutation in canola oil (Zhao et al., 2014) and iodine-catalyzed 
stereomutation in solvents (Haugan et al., 1992; He et al., 2002).

According to the findings of this study, when using drying for 
post-harvested dehydration, it is necessary to select and optimize 
the appropriate drying methods and conditions for each target ma-
terial, taking into account those with different susceptibilities. Heat 
susceptibility varied among the three closely related S. species with 
slightly different morphological structures. Therefore, this study 
demonstrated that an appropriate temperature must be used for 
each target compound in each alga used (Badmus et al., 2019; Silva 
et al., 2019).

4  |  CONCLUSION

Drying treatment is an effective and essential technique for reduc-
ing the moisture content of post-harvest seaweeds in the food and 
pharmaceutical industries. This study indicated that when using 
the drying treatment, selecting the right algal materials and drying 
method is crucial. This is due to differences in heat susceptibility 
even among closely related species. The optimal temperature to 
maintain all-trans form in P. australis with homogeneous morphology 
was 60°C with only a 5.3% loss, while other cis-isomer transforma-
tions were at 80°C. The apparent activation energy estimated by 
Arrhenius plots differed for the all-trans form and cis-isomer trans-
formations, indicating the presence of different reactions. In this 
study, the use of the intensity ratio of the MS fragment-ions was 
demonstrated to be a potential alternative method for identifying 
the types of fucoxanthin isomers with geometric fine structures. 
Therefore, the findings of this study provided useful information on 
the production of fucoxanthin isomers from brown seaweed, which 
has health benefits for humans.
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