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ABSTRACT: Microbial pigments of marine origin are gaining increasing attention in current research due to their
widely perceived applications as natural food colorants, antioxidants, antimicrobial compounds, anticancer agents,
and immune stimulators. This review is a short acknowledgement of the significant progress achieved over the past
five years of studies on pigments from marine bacterial isolates. Herein, we also discuss the typical challenges, as
well as recent technical developments, in isolating and cultivating marine bacteria and in conducting determination of
pigments as critical considerations in doing research in this field.
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INTRODUCTION

Marine microorganisms, due to their rich biodiver-
sity and genetic capacity, represent a significant
source of natural product discovery [1], with success
rates up to 4 times higher than other naturally
derived compounds [2]. In common microbial
cultures, such as marine agar, seawater-based rich
media agar, and Zobell agar medium, several marine
gram-positive and gram-negative bacteria appear to
produce an array of pigments [3], such as carotenes
(yellow to red), prodiginines (red), phenazines (yel-
low crystalline, deep-red solution in sulfuric acid),
quinones (bright yellow), and violacein (purple).
These marine bacterial pigments are being explored
for their production, which is clinically and indus-
trially important because they have demonstrated
various biological activities, such as antioxidant,
antimicrobial, and anticancer, as well as acting to
stimulate immunity [4].

In the 1960s, research on natural marine prod-
ucts began to flourish [5], primarily due to advances
in instrumentation for structure elucidation, partic-
ularly the mass spectrometry, and isolation tech-
niques as well as the availability of scuba gear for
the collection of marine organisms at certain depths.
Highlights of achievements have been frequently
reviewed and indicate the structural complexity and

Fig. 1 Search results using the keyword “novel pigment;
marine bacteria” in the search engine provided by https://
pubmed.ncbi.nlm.nih.gov/ from 1975 to 2021 for journal
articles.

potent biological activities of these pigments. In the
PubMed search engine, using the keyword “novel
pigments; marine bacteria”, the number of articles
reporting on bacterial marine pigments increased
from only 8 articles in 2002 to 84 articles by 2015
(Fig. 1). These articles include research on the
isolation and determination of new compounds and
on new bacterial species or strains, research on
bioactivity assays and therapeutic studies of pig-
ments, and review articles. The number of pub-
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lished articles on marine bacterial pigments has
shown a rather downhill trend since 2015, despite
the untapped potential of marine biodiversity.

HIGHLIGHTS DURING THE PAST FIVE YEARS

The most recent pigments that were extracted from
marine bacterial isolates that have been character-
ized in the past five years are listed in Table 1.
At least 17 species have been successfully isolated
from their native habitat, including in seawater,
sediments, and in association or affiliation with ma-
rine invertebrates. It has been extensively reviewed
that marine sediment holds untapped potential for
novel taxonomic and bioactive bacterial diversity
comparable to seawater [6], in which both aerobic
and anaerobic microbial ecosystems exist that per-
sist on very low fluxes of bioavailable energy over
geologic time [7]. It was reported that seawater and
sediments comprise a similar number of distinct bac-
terial species with a mean± standard deviation (SD)
of 1378±61 species for seawater and 1452±74
species for sediments [6]. Living together and
using invertebrates as hosts and microorganisms
as symbionts is also common in marine environ-
ments [8]. Marine invertebrates, particularly sessile
invertebrates, often rely upon chemical defence, and
symbiosis with biochemically versatile microorgan-
isms is an efficient strategy for survival [9]. In the
absence of their microbial symbionts, most marine
invertebrates cannot survive [10, 11]. Microbial
symbionts have been shown to produce a variety of
tailored biochemical traits due to coevolution with
their specific host, making them a rich source of
secondary metabolites, particularly pigments with
medically and commercially attractive bioactivities
[12–14].

Several new and rare compounds have been
characterized over the past five years (Table 1).
Carotenoids are a family of yellow to orange-red pig-
ments, generally comprising a 40-carbon skeleton
composed of 8-isoprene units. In carotenoid groups,
seven rare compounds include the C45 and C50
carotenoids. By 2017, more than 250 carotenoids
of marine origin had been identified [15], and the
unique compositions present in marine microorgan-
isms have promoted the use of carotenoids as a
chemical signature for rapid chemotaxonomic pro-
filing. Six new and rare carotenoids that have
been reported in the past five years include 2′-
isopentenyldehydrosaproxanthin (C45 carotenoid)
from Arthrobacter sp. P40 [16], decaprenoxanthin
and its glucosylated derivatives (C50 carotenoids)

from Rhodopirellula rubra LF2T [17], and zeax-
anthin sulfate from Erythrobacter flavus KJ5 [18].
Newly identified marine bacteria that produce
high levels of astaxanthin and its derivatives,
such as 2′-hydroxyastaxanthin and 2,2′-dihydroxy-
astaxanthin, have also been reported [19, 20]. The
unique structure of astaxanthin, which contains
both a keto group and hydroxyls, plays an important
role in neutralizing reactive oxygen species (ROS)
[21].

Newly characterized bioactive pigments from
the quinone group have also been reported, such
as fridamycins H and fridamycins I from Acti-
nokineospora spheciospongiae sp. nov., along with
three known compounds, actinosporins C, D, and
G [22]. Mersaquinone, a new tetracene deriva-
tive that exhibits antibacterial activity against
methicillin-resistant Staphylococcus aureus, was suc-
cessfully characterized and reported [23]. In
addition, two new polycyclic anthraquinones, N-
acetyl-N demethyl-mayamycin and Streptoanthra-
quinone A, were found in Streptomyces sp. 182SMLY,
which were successfully isolated from a sample
of marine sediment at a 3.6 m depth [24]. Al-
though prodiginines were initially identified from
the terrestrial bacterium Serrantia marcescens, these
compounds were subsequently obtained from sev-
eral bacteria in different marine habitats, such as
Pseudomonas rubra strains PS1 and SB14, which
were isolated from seawater [25], and Zooshikella
sp. and Streptomyces sp. that were isolated from
sediment [26]. Phenazine pigments, including
phenazine-1-carboxylic acid and pyocyanin, were
successfully characterized from Pseudomonas aerug-
inosa isolated from sediment [27, 28]. New Pseu-
doalteromonas byunsanensis strains JW1T and JW3
isolated from surface seawater were found to pro-
duce violacein [29].

MAIN CHALLENGES

The low percentage of microbes that can be readily
cultured and sustainably grown under laboratory
conditions is one of the primary hurdles to contin-
ued characterization of bioactive pigments. In fact,
more than 99% of marine microorganisms have not
been successfully cultured under laboratory condi-
tions [30]. Approximately 107 types of bacteria
were isolated from one gram of sediment, and only
5% of those microorganisms were able to be grown
in the lab [31]. This phenomenon is referred to
as the “great plate count anomaly” [32], a term
to describe differences in the order of magnitude
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Table 1 Most recent bio-pigments extracted from marine bacterial isolates have been characterized in the last five
years.

Pigment Chemical λmax Molecular Marine bacterial Therapeutic Ref.
Formula (nm) ion (m/z) species application

Carotenoid group
Decaprenoxanthin C50H72O2 417, 442, 471 705.6 [M+H]+ Arthrobacter sp. P40 Antioxidant [17]
Decaprenoxanthin
monoglucoside

C56H82O7 417, 442, 471 867.6 [M+H]+ Arthrobacter sp. P40 Antioxidant [17]

Decaprenoxanthin
diglucoside

C62H92O12 417, 442, 471 1029.6 [M+H]+ Arthrobacter sp. P40 Antioxidant [17]

2′-Hydroxy-
astaxanthin

C40H52O5 478 613 [M+H]+ Brevundimonas sp. strain N-5 Antioxidant [19]

2,2′-Dihydroxy-
astaxanthin

C40H52O6 478 629.0 [M+H]+ Brevundimonas scallop
Brevundimonas sp. strain N-5

Antioxidant [19, 20]

Dehydroflexixanthin C40H52O3 – 581 [M+H]+ Rhodopirellula rubra LF2T Antioxidant [16]
2′-Isopentenyldehy-
drosaproxanthin

C45H64O2 470, 500 637 [M+H]+ Rhodopirellula rubra LF2T Antioxidant [16]

Saproxanthin C40H56O2 444, 470, 500 590 [M+Na]+ Rhodopirellula rubra LF2T

Rubinisphaera brasiliensis Gr7
Antioxidant [16]

Zeaxanthin-sulfate C40H55SO5Na 427, 453, 481 648.5 [M−Na]− Erythrobacter flavus KJ5 Antioxidant [18, 41]

Quinone group
Bisantraquinone 1 C32H25O9 229, 261, 287,

361, 415
553.15 [M+H]+ Ecteinascidia turbinada Antibacterial

Anticancer
[44]

Fridamycins H C25H26O11 231, 253, 293 503.15 [M+H]+ Actinokineospora spheciospon-
giae sp. nov.

Antitrypanosomal [22]

Fridamycins I C32H33NO10Na 232, 253, 294 614 [M+H]+ Actinokineospora spheciospon-
giae sp. nov.

Antitrypanosomal

N-acetyl-N demethyl-
mayamycin

C27H25NO8 328, 443 514.15 [M+Na]+ Streptomyces sp. 182SMLY Antibacteria [24]

Mersaquinone C19H12O6 218, 277, 308,
350, 480, 515,
550

337.07 [M+H]+ Streptomyces sp. Antibacterial [23]

Streptoanthra-
quinone A

C28H22O8 220, 330, 445 509.12 [M+Na]+ Streptomyces sp. 182SMLY Antibacterial [24]

Prodigiosin group
Prodigiosin C20H25N3O 537 324.4 [M+H]+ Pseudomonas rubra strain PS1

and SB14
Zooshikella sp.
Streptomyces sp.

Antibacterial
Anticancer
Anti-
inflammatory

[25, 26]

Phenazine group
Phenazine-1-
carboxylic acid

C13H8N2O2 252, 365, 354 247.05 [M+Na]+ Pseudomonas aeruginosa
strain PA31x

Antibacterial
Antifungal

[27]

Pyocyanin C13H11N2O 201, 238, 318,
710, 886

211 [M]+ Pseudomonas aeruginosa Antibacterial [28, 45]

Violacein group
Violacein C20H13N3O3 585 344.12 [M+H]+ Janthinobacterium lividum

Chromobacterium violaceum
Pseudoalteromonas byunsanensis

Antimicrobial
Anticancer

[29, 46, 47]

between the numbers of cells from the natural envi-
ronment that form colonies on agar media and the
number countable by microscopic examination. Un-
fortunately, in marine ecosystems, only 0.01 to 0.1%
of oceanic marine bacterial cells produce colonies
using standard plating techniques [33]. The next
challenge is achieving an adequate amount of the
desired metabolites to allow identification of bac-
terial bioactive pigments and their bioactivity, a
tedious process [34]. Another challenge in this
research corresponds to genome mining. As the
number of available genomes is increasing, genome
mining is becoming a challenging method to identify
new natural products and to validate data [35].

DEVELOPMENTS AND CONSIDERATIONS

There are a number of reasons that marine microor-
ganisms are difficult to cultivate in the laboratory,
including a lack of adequate growth conditions,
low growth rates, poor development of colonies,
requirement for metabolites generated by other mi-
crobes, and the presence of dormant cells [36]. Var-
ious cultivation strategies have been proposed and
reviewed, such as the in situ cultivation technique
that uses diffusion chambers, microbial traps, iChip
(isolation chip), iTip (in situ cultivation by tip),
and double encapsulation techniques [37]. Another
promising new cultivation and screening strategy
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with the advantages of being high throughput, mi-
croscale, single-cell resolution, and automation po-
tential, called the microfluidic droplet-based tech-
nique, has also been introduced [38].

Inducing stress or external stimulation has been
a recent research trend and strategy to increase
pigment production in the biotechnological process;
for example, enhanced production of pyocyanin
from Pseudomonas aeruginosa was successful with
cottonseed meal [39]. The blue, yellow, white,
green, incandescent lamp, red halogen, and fluores-
cence lamp were used for enhancing the carotenoid
content, or another example using gamma radiation
for an enhanced production of prodigiosin [40].

Recently, combinatorial approaches using si-
multaneous bioinformatics, genetics, and analyti-
cal tools have introduced new strategies for the
discovery of bioactive pigments from marine bac-
terial isolates. As all pigments have a genetic
basis, the ability to obtain and interpret genetic
information have been the first step in daily based
protocol for structural elucidation, a process that is
increasingly available at low cost to non-specialists.
Setiyono et al [18] applied analysis of the com-
plete genome sequence of the marine bacterium
Erythrobacter flavus strain KJ5 [41] to reveal the
possibility of a new carotenoid present, by com-
paring the carotenoids composition produced by
E. longus and E. nanhaesediminis, members of the
genus Erythrobacter that have close sequence simi-
larity and were therefore assumed to have a similar
carotenoid biosynthesis pathway. Identification of
sulfate attachment to the zeaxanthin carotenoid
was then resolved by a tandem mass spectrome-
try (MS/MS) detected in negative ion mode using
multiple reaction monitoring (MRM). Another ex-
ample showed that BLAST analysis of antimicro-
bial prodiginine pigments from Pseudomonas rubra
strains PS1 and SB14 to identify highly similar
sequences (megablast) resulted in identification of
two primary pigments, prodigiosin and cycloprodi-
giosin, and their derivatives [25]. Recently, with
genome mining, the process of extracting informa-
tion from genome sequences to detect biosynthetic
pathways of bioactive natural products and their
possible functional and chemical interactions has
become available [35].

In combination with liquid chromatography
(LC), mass spectrometry has become the gold
standard for a high-throughput qualitative and
quantitative profiling of natural product com-
pounds [42], especially pigments. Other hyphen-
ated technique such as nuclear magnetic reso-

nance coupled with LC (LC-NMR) is also use-
ful analytical platforms for detection, identifica-
tion, and quantification of compounds in extracts.
NMR analysis is reproducible and provides de-
tailed structural information, although it gener-
ally profiles only major constituents, in other
words, it has relatively low sensitivity. Thou-
sands of sets of MS/MS data have been recorded
and continuously developed in publicly accessible
databases. Open-access knowledge bases contain-
ing tandem mass spectrometry, such as the Global
Natural Products Social Molecular Networking
(GNPS, https://gnps.ucsd.edu/ProteoSAFe/static/
gnps-splash.jsp) and the Natural Product Atlas
(https://www.npatlas.org/joomla/), which provide
a tool to explore the structure of microbial natural
products, are available and have greatly enhanced
the efficiency of the replication processes, leading
to identification of new molecules [43]. Specifically,
for the carotenoid group, the Carotenoid Database
(http://carotenoiddb.jp/), at the time of writing,
provides information on 1204 natural carotenoids
in 722 source organisms, including their biosyn-
thetic pathways, structures and similarity search,
and some biological activities.
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