LAMPIRAN

Lampiran 1 Tabel Karakteristik 118 Unsur

No.	Nama Unsur	Kelompok	Karakteristik
1	Hydrogen (H)	Hydrogen	Pure hydrogen in a glass sphere
		· D	gives off a purple glow when
	11 1	: K	electricified.
2	Lithium (Li)	Alkali metals	Lithium is the lightest of all
4			metals. It can easily float on
			water.
3	Sodium (Na)	Alkali metals	Bright yellow lights in fireworks
			get their colour from burning
			sodium compounds.
4	Potassium (K)	Alkali metals	The name potassium comes from
			potash bu <mark>t the e</mark> lement's chemical
			symbol, K <mark>, is tak</mark> en from kalium, a
1 1			Latin word for "ash".
5	Rubidium (Rb)	Alkali metals	Rubidium was named after Latin
			word rubidius, meaning "deepest
10			red". This refers to the red-
0			coloured flame it produces when
4			burned.
6	Caesium (Cs)	Alkali metals	Its name means "sky blue" and
	' 6		refers to the colour of caesium's
			flame when burning.
7	Francium (Fr)	Alkali metals	The French chemist Marguerite
			Perey discovered francium in
			1939. She named this element
			francium after her home country.

8	Beryllium (Be)	Alkaline earth metals	It was discovered by the French chemist Louis Nicolas Vauquelin. He extracted the pure metal from emerald, which is a valuable green form of the mineral beryl.
9	Magnesium	Alkaline	Chlorophyll is an important
	(Mg)	earth metals	molecule in plants and at its centre sits a magnesium atom,
4	/ // "		which helps plants convert
4			sunlight into energy in
			photosynthesis.
10	Calcium (Ca)	Alkaline	Oranges are a good source of
		earth metals	calcium, and most orange juices
			have extra calcium added to them.
11	Strontium (Sr)	Alkaline	Stronti <mark>um was</mark> discovered in a
		earth metals	mineral f <mark>ound near the Scottish</mark>
П			village of Strontian. Strontium
			carbonate produces a red colour
			in flares and fireworks.
12	Barium (Ba)	Alkaline	Barium is named after the Greek
0		earth metals	word barys, which means "heavy",
4			because barium and its minerals
13	Radium (Ra)	Alkaline	Padium is the only radioactive
13	Kaaium (Ka)	earth metals	Radium is the only radioactive member of the alkaline earth
		earm metats	metals.
14	Scandium (Sc)	Transition	Scandium is spread so thinly in
11	Scanarim (Sc)	metals	Earth's rocks that it is very
		,	difficult to collect a large amount
			of this element. It is a soft and

			lightweight metal, scandium is
			similar to aluminium.
15	Titanium (Ti)	Transition	Titanium was named after the
		metals	Titans, a race of mythic Greek
			gods. This strong metal makes
			excellent protective shields in
		D	body armour.
16	Vanadium (V)	Transition	Ancient metalworkers used tiny
	/ "	metals	amounts of vanadium compounds
4			to make Damascus Steel
			(Damascus is the capital city of
			Syria, where the world's sharpest
			swords were made).
17	Chromium (Cr)	Transition	Chromium is named after chroma,
T		metals	the Gr <mark>eek word</mark> for "colour".
18	Manganese	Transition	The human body needs a tiny
П	(Mn)	metals	amount of manganese, which we
			can get from pineapples.
19	Iron (Fe)	Transition	The human body uses iron to make
		metals	haemoglobin, a substance in
0			blood that carries oxygen around
1			our body (oxygen helps our cells
7	1,		produce energy for the body to
	VC	111	work.
20	Cobalt (Co)	Transition	When Medieval German miners
		metals	tried to purify ore of cobalts, the
			arsenic gas released made them
			sick. This unwanted side-effect led
			to the name kobold, a mischievous
			spirit.

21	Nickel (Ni)	Transition metals	Nickel is named after Old Nick, a demonic spirit from Christian lore that was believed to live underground.
22	Copper (Cu)	Transition metals	Pure copper does not rust, but it reacts with air over time to form a layer of grey-green copper carbonate called verdigris. This can be seen on the Statue of
23	Zina (Zn)	Transition	Along with many other elements
	Zinc (Zn)	metals	Along with many other elements, zinc atoms are form inside supernovae (exploding giant stars).
24	Yttrium (Y)	Transition	The samples of rock brought back
П Z		metals	from the Moon by astronouts in NASA's Apollo missions contained higher levels of yttrium than rocks on Earth.
25	Zirconium (Zr)	Transition metals	This element is named after the mineral zircon, which means "golden" in Persian, a reference to the golden-brown colour of its crystals.
26	Niobium (Nb)	Transition metals	Niobium does not expand when hot.
27	Molybdenum (Mo)	Transition metals	Molybdenum gets its unusual name from the Greek word molybdos, which means "lead". Miners once mistook molybdenite,

			a dark mineral containing this metal, for an ore of lead.
20	Tooler stirre	Tugugitian	
28	Technetium	Transition	Technetium was the first element
	(Tc)	metals	to be produced artificially by
			researchers. It is the lightest
			radioactive element.
29	Ruthenium	Transition	Ruthenium is named after
	(Ru)	metals	Ruthenia, an old Latin name for
	/ "		Russia.
30	Rhodium (Rh)	Transition	The rosy red colour of one of its
		metals	compounds inspired the name
			rhodium. The Greek word rhodon
			means "rose-coloured".
31	Palladium (Pd)	Transition	Palladium absorbs hydrogen, like
T		metals	a spon <mark>ge soaki</mark> ng up water.
32	Silver (Ag)	Transition	Silver get <mark>s its s</mark> ymbol "Ag" from
П		metals	its Latin name argentum, which
			means "shiny white".
33	Cadmium (Cd)	Transition	Cadmium is a highly toxic metal,
		metals	and is known to cause cancer.
34	Hafnium (Hf)	Transition	Hafnium is named after Hafnia,
		metals	the Latin word for the city of
7	1,		Copenhagen in Denmark.
35	Tantalum (Ta)	Transition	Tantalum is a hard metal named
	9	metals	after Tantalus, a man from Greek
			mythology who was punished by
			the gods.
36	Tungsten (W)	Transition	Tungsten has the highest melting
		metals	point of any metal: it turns to
			liquid at a searing 3,414 C.

			Tungsten's high melting point
			allows it to be used in the
			filaments of light bulbs.
37	Rhenium (Re)	Transition	Rhenium has the highest boiling
		metals	point of any element. This allows
			alloys made of this element to be
		- D	used in very hot conditions, such
		= K .	as those in the jet engines of
	1 4		fighter planes.
38	Osmium (Os)	Transition	A red osmium oxide stains cells so
		metals	they can be seen clearly under a
			powerful microscope, while a
			black oxide powder allows
			fingerprints to be revealed in
T			crime <mark>investi</mark> gations.
39	Iridium (77)	Transition	Iridium i <mark>s the</mark> rarest natural
П		metals	element on Earth. Scientists
			believe this small quantity was
2			deposited by the dust from an
			explosion 66 million years ago
0			when a large meteorite hit our
			planet.
40	Platinum (Pt)	Transition	Spanish explorers first found
	WC	metals	platinum in the mines of South
	G	UI	America in the 1700s. They
			obtained a whitish substance that
			the locals living near there called
			platina, meaning "little silver".
41	Gold (Au)	Transition	This metal has always been seen
		metals	as valuable and many ancient

			artefacts, such as the 3,300-year-
			old death mask of Egyptian
			pharaoh Tutankhamun, were
			forged from it.
42	Mercury (Hg)	Transition	Ancient Romans called mercury
		metals	hydrargyrum, meaning "silver
		- D	water". It was later known as
		= K .	quicksilver because of how fast it
	/ 4		flowed as a stream of liquid.
43	Rutherfordium	Transition	Rutherfordium was the first
	(Rf)	metals	superheavy element to be
			discovered. It is names after the
			New Zealand scientist Ernest
			Rutherford, who, in 1913,
			suggested that every atom has a
			nucleus, o <mark>r core</mark> .
44	Dubnium (Db)	Transition	It took scientists nearly 30 years
		metals	to agree on a name for this
Z			element. Dubnium was finally
			named after the Russian city of
0			Dubna, where the first atoms of
1			this element were created.
45	Seaborgium	Transition	Atoms of seaborgium break apart
	(Sg)	metals	in about three minutes, so little is
	G	UI	known about it. It was named after
			the US scientist Glenn T. Seaborg.
46	Bohrium (Bh)	Transition	Bohrium is an artificial element
		metals	named after the Danish scientist
			Niels Bohr. Atoms of this metal
			are unstable: half of any sample of

			bohrium atoms breaks apart in 61
			seconds.
47	Hassium (Hs)	Transition	Scientists think hassium is a
		metals	metal, but they have not been able
			to produce enough of its atoms to
			study it in any detail.
48	Meitnerium	Transition	Researchers think meitnerium
	(Mt)	metals	might be the densest of all
	/ "		elements.
49	Darmstadtium	Transition	A team led by German physicist
	(Ds)	metals	Sigurd Hofmann created
			darmstadtium by smashing nickel
			atoms into leads atoms in a
			particle accelerator (a machine in
			which atoms are smashed
			together).
50	Roentgenium	Transition	Scientist believe that this metal
	(Rg)	metals	shares many characteristics with
4			precious metals, such as gold and
			silver.
51	Copernicium	Transition	Copernicium is named after
1	(Cn)	metals	Nicolaus Copernicus, the Polish
	1,		astronomer who theorized that
	VC	111	our planet orbits the Sun.
52	Lanthanum	Lanthanides	Although the word "lanthanum"
	(La)		means "to lie hidden", it is more
			abundant than most metals.
			Lanthanum carbonate is used to
			treat patient with kidney disease.

53	, ,	Lanthanides	Cerium was the first of the lanthanides to be discovered. It is named after the dwarf planet Ceres, which was discovered two years before the element was isolated.
54	Praseodymium (Pr)	Lanthanides	Part of this element's name comes from prasinos, the Greek word for "green". Praseodymium compounds provide a green colour to some artificial jewels.
55	Neodymium (Nd)	Lanthanides	Strong magnets made of neodymium can be used to lift thousands of times their own mass
1 56	Promethium (Pm)	Lanthanides	Promethium is the rarest lanthanide element. Being very radioactive, it is used in more missiles, because it converts this radioactivity into electrical power.
57	Samarium (Sm)	Lanthanides	Samarium is mixed with cobalt to make permanent magnets that are often used in electric guitars.
58	Europium (Eu)	Lanthanides	Europium was named after the continent of Europe. When placed under ultraviolet (UV) light, the compound europium oxide gives off a red glow.
59	Gadolinium (Gd)	Lanthanides	Gadolinium compounds are used to obtain clear MRI scans.

60	Terbium (Tb)	Lanthanides	Pure terbium is added to other metals to make powerful magnets used in sound-producing devices, such as the device which uses magnets to turn any flat surface. like a window, into a loudspeaker.
61	Dysprosium (Dy)	Lanthanides	Dysprosium reacts more easily with air and water than most other lanthanide metals.
62	Holmium (Ho)	Lanthanides	Pure holmium can produce a strong magnetic field and is therefore used in magnets.
63	Erbium (Er) Thulium (Tm)	Lanthanides Lanthanides	Many erbium compounds are pink in colour and are used to colour pottery and glass. Thulium is a soft metal that glows blue under ultraviolet (UV) light.
65	Ytterbium (Yb)	Lanthanides	Ytterbium tends to be more reactive than other lanthanide metals. It is stored in sealed containers to stop the metal from reacting with oxygen.
66	Lutetium (Lu)	Lanthanides	Lutetium was the last of the rare earth metals to be discovered. It is also the final member of the lanthanides.
67	Actinium (Ac)	Actinides	Rare in nature, actinium is a metal formed by the decay of other radioactive elements.

68	Thorium (Th) Actinides	Thorium was named after Thor,
		the Viking god of thunder.
69	Protactinium Actinides	The name protactinium means
	(Pa)	"before actinium". Small
		quantities of protactinium are
		found in ancient sands and mud.
70	Uranium(U) Actinides	Named after the planet Uranus,
	, VEN	a.k.a. the ice giant, uranium was
		the first known radioactive
		element.
71	Neptunium Actinides	Sitting next to uranium in the
	(Np)	periodic table, neptunium was
		named after the planet Neptune,
		the other ice giant in the solar
D		system.
72	Plutonium (Pu <mark>) Actinid</mark> es	Plutonium was named after the
П		planet Pl <mark>uto, f</mark> ollowing the other
		two elements, Uranium and
2		Neptunium. Hardly any plutonium
		exists in nature: most of it has
0		decayed into other elements over
	1	time.
73	Americium Actinides	Radioactivity emitted by
	(Am)	americium atoms causes the air
	GU	inside smoke detectors to conduct
		electricity. When smoke disrupts
		the electric current, an alarm goes
		off.

74	Curium (Cm) Actinides	Curium is a silvery, radioactive
		metal that glows reddish purple in
		the dark.
75	Berkelium (Bk) Actinides	Berkelium has no uses other than
		the creation of heavier elements,
		such as tennessine.
76	Californium Actinide.	Californium is used in the
	(Cf)	treatment of cancer.
77	Einsteinium Actinides	This element was named after the
6	(Es)	great German-born scientist
		Albert Einstein, and was found to
3		be a silvery, radioactive metal
		that glows blue in the dark.
78	Fermium (Fm) Actinide.	Fermium was first identified in the
		debris <mark>of an a</mark> tom bomb test in
		1953. Thi <mark>s unst</mark> able element has
П		no known <mark>uses</mark> beyond research.
79	Mendelevium Actinides	Mendelevium is produced in very
Z	(Md)	small amounts by firing parts of
		helium atoms at einsteinium atoms
0		in a particle accelerator (a
1		machine in which atoms are
7	Λ.	smashed together).
80	Nobelium (No) Actinides	This artificial metal is named after
	' G U	the Swedish chemist Alfred Nobel,
		who started the Nobel Prize.
81	Lawrencium Actinides	It is named after the US scientist
	(Lr)	Ernest Lawrence, who developed
		the first cyclotron particle
		accelerator. Its atoms were

produced in a similar machine by firing boron atoms at californium atoms.

				atoms.
82	Boron (B)	The	Boron	Boron-deficient corn does not
		Group		grow properly.
83	Aluminium (Al)	The	Boron	Aluminium is expensive to purify,
		Group		so it is often recycled instead.
	. \ [1	Drinks cans are almost 100 per
	/ "			cent pure aluminium and can be
				shredded, melted down, and made
				into new cans.
84	Gallium (Ga)	The	Boron	Gallium melts at just 29 C (84.2
		Group		F), which means it soon becomes
				liquid when held in the hand.
85	Indium (In)	The	Boron	Indium was named after indigo,
		Group		which is t <mark>he col</mark> our of the light its
П				atoms rel <mark>ease</mark> when electricified.
86	Thallium (Tl)	The	Boron	Thallium was named after the
Z		Group		Greek word thallos, which means
				"green shoot": it was first
0				identified from the colours in its
1				flame, which includes a bright
7	1,			green light.
87	Nihonium (Nh)	The	Boron	Nihonium was named after the
	G	Group		Japanese word nihon, which
				means Japan.
88	Carbon (C)	The C	Carbon	Each carbon atom can bond to
		Group		four others, allowing them to form
				chains and rings.

89	Silicon (Si)	The Carbon	Tiny hairs on stinging nettle have
		Group	silica (a silicon compound) tips
			that break off when we touch them,
			releasing chemicals taht sting.
90	Germanium	The Carbon	This semi-metal is named after the
	(Ge)	Group	country Germany. Germanium is
		D	found in the atmosphere of
	. \ \	- n ,	Jupiter.
91	Tin (Sn)	The Carbon	Tin was one of the first metals
6		Group	used by humans. As long as 5,000
			years ago, tin was mixed with
			copper to make bronze, an alloy
			that was stronger than either pure
			metal.
92	Lead (Pb)	The Carbon	The ch <mark>emical sy</mark> mbol for lead,
		Group	Pb, come <mark>s from</mark> the Latin word
П			plumbum <mark>. This</mark> is
			where the word "plumber" comes
Z			from:
			in ancient Roman times, water
0			pipes used
			in plumbing were made from this
7	Λ.		soft metal.
93	Flerovium (Fl)	The Carbon	Flevorium was produced by
	. 0	Group	smashing together atoms of
			calcium and plutonium.
94	Nitrogen (N)	The Nitrogen	A group of nitrogen compounds is
		Group	used in explosives, including TNT.
			When ignited, they explode
			because the bonds between

			nitrogen atoms detach very
			quickly.
95	Phosphorus (P)	The Nitrogen	This was accidently discovered by
		Group	Henning Brand. He boiled a pot
			full of urine for days & produced
			a mysterious glowing substance,
		D	which he called phosphorus,
	. \ [: R	meaning " giver of light".
96	Arsenic (As)	The Nitrogen	Arsenic is often called the "king of
4		Group	poisons". Every form of arsenic -
			either pure or in a compound - is
			poisonous to animal. Arsenic
			compounds are used in making
			some rat poisons.
97	Antimony (Sb)	The Nitrogen	Antimony gets its name from the
		Group	Greek wo <mark>rd ant</mark> i-monos, meaning
П			"not alon <mark>e". Its</mark> symbol, Sb, comes
			from stibium, the Latin word for
3			kohl, a form of eye make-up.
98	Bismuth (Bi)	The Nitrogen	Yellow bismuth pigments are used
9		Group	in paints and cosmetics. Nail
1			polish gives a pearly effect
7	1,		because of bismuth compounds.
99	Moscovium	The Nitrogen	Moscovium is named after the
	(Mc)	Group	Russian capital city os Moscow. It
			was first created at the Joint
			Institute for Nuclear Research in
			Dubna, Russia.
100	Oxygen (O)	The Oxygen	Oxygen is also used up when it
		Group	reacts with other elements to form

			compounds called oxide.
			However, it is replenished by
			plants through photosynthesis,
			which releases fresh oxygen.
101	Sulfur (S)	The Oxygen	n Many sulfur compounds smell
		Group	bad. For example, the rotten-egg
		D	smell of volcanic pools is due to
	. \ \ \	= n ,	hydrogen sulfide gas.
102	Selenium (Se)	The Oxygen	n Selenium is named after Selene,
4		Group	the Greek goddess of the Moon.
			Selenium has two main pure
			forms: grey selenium, which is a
			hard substance, and red selenium,
			which is a soft powder.
103	Tellurium (Te)	The Oxygen	Telluri <mark>um is on</mark> e of the 10 rarest
		Group	elements o <mark>n this</mark> planet. It gets its
П			name fro <mark>m the</mark> Latin word tellus,
			which means Earth.
104	Polonium (Po)	The Oxygen	Despite its radioactivity, this
		Group	element is used to heat and power
0			spacecraft, such as the Russian
1			Lunokhod rovers, which landed on
7	1,		the Moon in the 1970s.
105	Livermorium	The Oxygen	This highly radioactive element
	(Lv)	Group	was produced by firing calcium
			atoms at curium atoms in a
			particle accelerator (a machine in
			which atoms are smashed
			together).

	106	Fluorine(F)	The Halogen	This pale yellow gas is incredibly
			Group	dangerous when pure: just a tiny
				amount added to the air can kill a
				person. Thus, pure fluorine is
				often stored innickel containers
				that can resist its attack.
-	107	Chlorine (Cl)	The Halogen	Chlorine is named after the Greek
			Group	word chlóros, which means "pale
		/ 4		green", a reference to the colour
	4	*		of this gaseous element.
-	108	Bromine (Br)	The Halogen	Bromine is the only non-metal that
	O		Group	is a liquid at room temperature. It
				is named after the Greek word for
				"stench" because of its strong
	7			smell. Pure bromine is a red-
				brown liqu <mark>id.</mark>
П	109	Iodine (I)	The Halogen	This elem <mark>ent f</mark> orms a purple gas
			Group	when heated, and is named after
				the Greek word iodes, which
1				means "violet".
-	110	Astatine (At)	The Halogen	Atoms of astatine are unstable,
	1		Group	and typically break down after
		Λ.		just a few hours, into atoms of
		1/ 0	11 1	lighter elements, such as bismuth.
-	111	Tennessine (Ts)	The Halogen	Tennessine is the youngest
			Group	element in the periodic table. Only
				a few atoms of it have ever been
				made. Scientists have predicted it
				to be a semi-metal, unlike all the
				other non-metal halogens.

112	Helium (He)	Noble Gases	Helium is the second lightest element after hydrogen. Unlike hydrogen, which is very reactive, helium is a noble gas and does not react at all. Thus, it is safe to use
113	Neon (Ne)	Noble Gases	in objects such as party balloons. Some of the element neon was locked in Earth's rocks when the planet formed, and this is released into the air by volcanic eruptions.
5			It is most commonly used in lighting, such as illuminated signs.
114 U	Argon (Ar)	Noble Gases	It undergoes no reactions with any other element, and was named after the Greek word argos, meaning "idle".
115	Krypton (Kr)	Noble Gases	The word krypton means the "hidden one" in Greek. Pure krypton produces a very bright white light when electricified with a current, which makes it ideal for use in flash bulbs.
116	Xenon (Xe)	Noble Gases	Xenon is so rare that there is only one atom of this gaseuous element for every 10 million atoms in the air. Xenon is used in powerful lasers that can kill bacteria.
117	Radon (Rn)	Noble Gases	Radon is the only natural radioactive noble gas. Radon is

very radioactive and breathing it in can cause illness, such as lung cancer.

Oganesson Noble Gases The heaviest element yet made is oganesson. Only a few atoms have been created so far, so its properties are not well understood.

ANG

Lampiran 2 Hasil Desain 118 Karakter Unsur

Lampiran 3 Hasil Desain 118 Kartu Permainan "Elemion" Cs 55 Mg 12 MAGNESIUM Ca 20 Ba 56 Ti 22 Mn 25 Fe 25 Cu 29 COPPER Ru (4) Nb 🗐 Mo 42 Tc 43 Rh 45 Pd 46 W 74 TUNGSTEN Hf 72 Ag 47 Cd (48) Re 75 Os 76

102

Lampiran 4 Rekapan Percakapan Bimbingan TA

7/14/23, 11:14 PM

Rekap Percakapan Bimbingan

UNIVERSITAS PEMBANGUNAN JAYA

Jalan Cendrawasih Raya Blok B7/P, Sawah Baru, Kec. Ciputat, Kota Tangerang Selatan, Banten 15413 Website: www.upj.ac.id / e-Mail: info@upj.ac.id (mailto:info@upj.ac.id) / Telepon: 021 - 7455555

REKAP PERCAKAPAN BIMBINGAN

Judul Tugas Akhir : Perancangan Board Game "Elemion" sebagai Sarana Pembelajaran Tabel Periodik Unsur Kimia

Sesi / Bahasan : ke-1 / Membahas hasil seminar proposal dan memilah-milah bagian-bagian yang harus dikeep dan ditakeout dari proposal

seminar proposal untuk laporan TA

Mahasiswa : 2019061054 - Camila Dosen Pembimbing : 08.0120.001 - Zita Nadia, S.Ds, M.Ds.

Mahasiswa

Jumat, 14 Juli 2023, 23:06:04

Salam Bu Zita, terlampir laporan dengan bagian-bagian yang sudah saya milah-milah dari masukan sempro Bu. Mohon review dan feedbacknya Bu.

erima kasih

Sesi / Bahasan : ke-2 / Diskusi buku referensi visual untuk pengembangan karakter "Elemion"

Mahasiswa : 2019061054 - Camila Dosen Pembimbing : 08.0120.001 - Zita Nadia, S.Ds, M.Ds.

Jumat, 14 Juli 2023, 23:08:30

Salam Bu Zita, untuk buku yang saya gunakan dalam perancangan visual adalah The Elements Book: A Visual Encyclopedia of the Periodic Table. Apakah aman Bu? Mohon feedbacknya dan masukkan Ibu untuk buku lain yang mungkin bisa dipakai Bu. Terima kasih

Aparam aman bu? Monon reedbackinga dan masukkan ibu dinuk buku lain yang mungkin bisa dipakar bu. Terima kasin

Sesi / Bahasan : ke-3 / Memilah buku yang membahas tentang perancangan board game. Diskusi terkait poin-poin penting apa saja yang

dapat digunakan sebagai acuan dalam perancangan board game

 Mahasiswa
 : 2019061054 - Camilla
 Dosen Pembimbing : 08.0120.001 - Zita Nadia, S.Ds, M.Ds.

Jumat, 14 Juli 2023, 23:09:26

Salam Bu Zita, izin diskusi terkait poin-poin yang harus diperhatikan dalam perancangan Board Game. Terima kasih

Sesi / Bahasan : ke-4 / Membahas masukan yang diperoleh dari preview 2 dan pengaplikasiannya pada laporan persiapan kelayakan sidang

Mahasiswa : 2019061054 - Camila Dosen Pembimbing : 08.0120.001 - Zita Nadia, S.Ds, M.Ds.

Jumat, 14 Juli 2023, 23:10:07

Permisi Bu Zita. Izin diskusi hasil revisi laporan berdasarkan masukan dari preview 2 Bu. Terima kasih

Sesi / Bahasan : ke-5 / Diskusi perkembangan visual karakter-karakter pada elemion. Mendiskusikan apakah ada yang kurang terkait gaya visual karakter

Mahasiswa : 2019061054 - Camila Dosen Pembimbing : 08.0120.001 - Zita Nadia, S.Ds, M.Ds.

Jumat, 14 Juli 2023, 23:10:40

Salam Bu Zita. Izin diskusi terkait pengembangan karakter unsur yang telah saya buat. Terima kasih Bu

Sesi / Bahasan : ke-6 / Membahas hasil desain kartu setelah ditambahkan karakter dan informasi-informasi terkait karakter unsur dengan

masukan bahwa penggunaan frame berwarna pada bagian "FACT" akan lebih baik.

Mahasiswa : 2019061054 - Camila Dosen Pembimbing : 08.0120.001 - Zita Nadia, S.Ds, M.Ds.

Jumat, 14 Juli 2023, 23:11:41

Permisi Bu Zita. Izin konsultasi desain kartu yang ditata bersama dengan karakter "Elemion" yang sudah coba explore Bu. Terima kasih

https://my.upj.ac.id/siakad/list_bimbingankonsultasi/printall/4193

1/2

7/14/23, 11:14 PM

Rekap Percakapan Bimbingan

Sesi / Bahasan

: ke-7 / Diskusi proses laporan dan menyusun poin-poin penting yang perlu dihighlight di dalam laporan supaya lebih

informatif, khususnya konten dalam BAB 2, 3, dan 4

Mahasiswa

: 2019061054 - Camila

Dosen Pembimbing: 08.0120.001 - Zita Nadia, S.Ds, M.Ds.

Jumat, 14 Juli 2023, 23:12:15

Permisi Bu Zita. Izin diskusi dan bimbingan poin-poin yang harus di-highlight dalam laporan TA. Terima kasih

Sesi / Bahasan : ke-8 / Membahas

ke-8 / Membahas judul final project TA dalam bahasa Indonesia dan bahasa Inggris
 2019061054 - Camila
 Dosen Pembimbing: 08.0120.001 - Zita Nadia, S.Ds, M.Ds.

Mahasiswa : 2019061054 - Camila

Permisi Bu Zita. Izin diskusi dan konfirmasi persetujuan judul untuk TA saya Bu. Terima kasih

Sesi/Bahasan : k

Jumat, 14 Juli 2023, 23:12:47

: ke-9 / Membahas jenis merchandise yang akan dibuat, apakah gantungan, pin, atau stiker

Mahasiswa : 2019061054 - Camila

Dosen Pembimbing: 08.0120.001 - Zita Nadia, S.Ds, M.Ds.

Jumat, 14 Juli 2023, 23:13:23

Salam Bu Zita. Bu, izin diskusi jenis merchandise yang sebaiknya saya cetak untuk pameran TA. Terima kasih Bu

Sesi / Bahasan

: ke-10 / Preview desain kotak packaging "Elemion" sebelum dicetak. Hasil diskusi mengusulkan sebaiknya ditambahkan

subtitle. Subtitle akhirnya berupa "Conquer the Land of the Elements"

Mahasiswa : 2019061054 - Camila

Dosen Pembimbing : 08.0120.001 - Zita Nadia, S.Ds, M.Ds.

Jumat, 14 Juli 2023, 23:14:02

Permisi Bu. Bu saya izin konfirmasi desain permainan dan kemasan permainan sebelum dicetak Bu. Terima kasih ya Bu

https://my.upj.ac.id/siakad/list_bimbingankonsultasi/printall/4193

2/2